Examination regulations of 2021-22 and 2022-23

Scheme of Instruction & Detailed Syllabus

RULES AND REGULATIONS OF M.B.A. PROGRAMME

The Master of Business Administration (M.B.A.) is a Post-Graduate course offered as: Two-year i.e., four semesters Full time Day programme

1. Eligibility Conditions:

Admission eligibility for MBA course is as per TS Govt norms and Osmania University norms and Procedures.

2. Instruction Schedule:

Instruction will be provided as per the workload indicated in the structure, Rules and regulations of M.B.A. Program for all Theory, Practical and Project Work course requirements. The almanac will be as follows for all semesters.

Duration of instruction : 14-16 Weeks / As per the University Norms, Preparation Holidays : 7-10 Days

3. Rules of Attendance:

Students must attend 75% of the total classes conducted for all the courses put together in a semester. Relaxation of 10% of attendance might be given to a student on medical grounds on the basis of a valid medical certificate and payment of condonation fee prescribed by the STLW.

4. Promotion Rules

A student will be promoted subject to the following rules:

I Semester to II Semester:

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should be registered for the Semester End Exam for the I semester.

II Semester to III Semester

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should have passed at least 50% of Theory courses of I & II Semesters put together and should be registered for the Semester End Examination.

III Semester to IV Semester:

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should pass 50% of the theory course of I, II and III semester put together and having registered for the Semester End Examination.

Choice of Elective:

Student has to opt for one elective - Finance / Marketing / Human Resource / Systems. There are four papers in each elective area two papers in III Semester and two papers in IV Semester.

For Example: A Student in Finance area should opt for two Finance papers only in III and two Elective papers in IV semester. Similarly for Marketing, HR and Systems Electives.

Cancellation of Admission

The admission of a candidate admitted to the MBA Course stands cancelled if: She does not put in at least 40% of attendance in Semester-I.

Or

She puts in at least 40% of attendance in Semester – I, but failed to register for 1* Semester Examinations

Or

She fails to fulfill all the requirements for the award of the degree as specified, within 4 academic years from the time of admission in full time 2 year MBA program.

Mini Project:

The students should undertake the mini project by doing internship for 2 weeks of duration or should be done in the department by dedicating 2hrs/week during II Semester of MBA Programme and they are required to submit a Mini Project Report and it will be evaluated for 100 marks and the same will be converted into equivalent grades as per the SCETW examination evaluation norms. (Carrying 2 credits).

Project Work:

Project Work should be carried out in the Final Year of MBA Programme i.e., III & IV Semesters. The students are required to do project work in any area of Management under the active guidance of Internal Faculty Member assigned to the student. The Project work usually consists of selecting a Topic / Problem / Theme in any area of management, gather relevant data, analyze and interpret the same in a systematic and scientific manner. Selecting a topic/problem/theme in any area of the management should be done in III semester and the synopsis should be presented in the III semester. To gather the data and to have field exposure a six weeks will be allocated between III and IV semester. The Project Work should be undertaken under the supervision of the Faculty Member assigned for the purpose. The Project Report should be submitted to the STLW 30 days (one month) before commencement of Final Semester Examinations and Project work will be evaluated by internal and external examiners.

Comprehensive Viva Voce:

A Viva Voce examination will be conducted and evaluated by internal and external examiners. The scope of the questions will be from all the courses a student has studied for all the four semesters put together. The evaluation will be for 100 marks and the minimum to clear (pass) is 50%. The scored marks will be converted into equivalent grades.

5. Award of Grades For Seminars, Project Report and Viva Voce Examinations: Seminars: Students are expected to give a presentation on a relevant topic of any Contemporary issues. Seminars are evaluated by internal faculty for 50 marks and converted into equivalent grades. Candidate should score atleast 50% of the marks or D grade.

Project Report and Comprehensive Viva Voce examination will be evaluated by internal and external Examiners for 100 marks, each candidate should score minimum of 50% and the same will be converted into equivalent grades.

Instructional Work Load For Theory, Practical Courses and 'Mentoring & Project Work':

Each of the Theory Courses of the MBA Programme shall have instructional workload of 5 periods of 60 Minutes duration per week in addition to mentoring and project work as specified in the course curriculum. The Instructional workload for each of the Practical and Lab Courses shall be 4 Periods of 60 Minutes duration per week.

7. Evaluation System:

- All the courses will have 60% marks for Semester End Examination(SEE) and 40% marks for Continuous Internal Evaluation(CIE)
- 2. Duration of the examination for all the courses is three hours each
- A candidate shall be deemed to have fully passed the SEE, if she secures not less than minimum marks/grade (E) as prescribed below irrespective of marks obtained in CIE.

Minimum pass marks/grade in the Semester End Examinations Evaluation shall be:

Each Theory course	40%	E-Grade
Each Practical Course / mini project / Seminars / Internship / Project Work	50%	D-Grade

- A course that has sessional /CIE marks but no Semester End Examination as per scheme is treated as Pass if she secures 50%(E Grade) of sessional/CIE marks
- In case of hearing impaired, orthopedically handicapped and visually challenged candidates, 10% reduction in pass marks in each subject is admissible as per G.O.Ms.No.150,dated 31-08-2006
- 6. A candidate desires to have revaluation can apply as per STLW(A) norms and notification of exam branch of STLW(A) issued at the time of declaration of results. A photo copy of valued theory answer script can also be obtained by paying the prescribed fee which will be mentioned in the said notification.
- The Guidelines, Rules and Regulations framed by the SCETW in this regard will be applicable to the MBA Programme.

*CIE: Continuous Internal Evaluation (Max. Marks: 40)

Two internal tests will be conducted (two and half units for each internal). Third internal Exam will be conducted with full syllabus for the students who were absent or wish to improve their marks secured in two tests conducted earlier. Average of the best two Exams will be considered for final marks.

S.No	Assessment Tool	Max. Marks
1	Internal Tests Short answer questions 5*1=5 Essay Questions 2*10=20	5 20
	Total	25
2	Case studies and/or Group Discussions and/or Activities	10
3	Assignments	5
	Total Marks	40

Break up for CIE 40 marks

I year- I semes	ter :	
Course Code	Course Title	Case study / Group discussion/ Activity (2 x 5 marks each=10M
MB101	Management & Organizational Behaviour	Group Discussion
MB102	Accounting for Management	Case study
MB103	Marketing Management	Case study
MB104	Elective- I	
	1. Business Law & Ethics	Case study
	2. Fundamentals of Technology Management	Case study
	3. Managerial Economics	Group Discussion
	4. Business Process Re engineering	Case study
MB105	Elective - II	6
	1. IT Applications for Management	Activity
	2. Business Communication	Group Discussion
	3. Customer Relationship Management	Activity: Role play
	4. Statistics for Management	Case study
I year -II seme	ster:	80
MB201	Human Resource Management	Activity: role play
MB202	Financial Management	Case study
MB203	Business Research Methods	Case study
MB204	Elective - III	
	1. Economic Environment and Policy	Group Discussion
	2. International Business	Case study
	3. Financial Markets & Services	Case study
	4. Corporate Social Responsibility	Case study
MB205	Elective - IV	
	1. Total Quality Management	Case study
	2. Strategic Management Accounting	Case study
	3. Startup Management	Group Discussion
	4. Retail Management	Case study

II year - semes	ter III:	
Course Code	Course Title	Case study / Group discussion/ Activity (2 x 5 marks each=10M
MB301	Operations Management	Group Discussion, case study
MB302	E- Business	Group Discussion
MB303	Quantitative Techniques for Business Decisions	case study
MB304	Discipline Specific Elective -I	
	1. Investment Management (Finance)	case study
	 Product and Brand Management (Marketing) 	case study
	 Compensation Management (Human resource) 	Group Discussion
	4. Decision Support Systems (Systems)	Group Discussion
MB305	Discipline Specific Elective -II	22
	1. International Finance (Finance)	Group Discussion
	 Promotion and Distribution Management (Marketing) 	case study
	3. Organization Development (Human Resource)	Group Discussion
	4. Business Analytics (Systems)	case study
MB306	Innovation Management	Group Discussion
II Year -Semes	ter IV	
MB401	Strategic Management	case study
MB402	Business Intelligence	Group Discussion
MB403	Supply Chain Management	case study
MB404	Discipline Specific Elective -III	
	1. Financial Risk Management (Finance)	case study
	2. Consumer Behaviour (Marketing)	case study
	 Performance Management (Human Resource) 	Activity: role play
	4. Data Base Management Systems (Systems)	case study
MB405	Discipline Specific Elective -IV	
	1. Banking & Insurance (Finance)	Group Discussion
	 Services and Global Marketing (Marketing) 	case study
	 Talent and Knowledge Management (Human Resource) 	Group Discussion
	4. Software Project Management (Systems)	case study

Pattern of Semester End Examination(SEE)

Section-A

Five short Answer questions of two marks each consists of ten marks 5x2=10

Section-B

Five Essay questions of 10 marks each consists of 50 marks with eight or choice from each unit. 5x10=50

The Practical Examination marks distribution is followed as 40M (Internal), 60M (External).

8. Conduct of Examinations:

Examination will be conducted based on the existing rules of examination Branch of STLW for I,II,III,IV semesters and only for IV semester separate advanced supplementary examinations will be conducted so as to facilitate the students for future career.

9. Award of Degree And Division:

Candidates will be awarded MBA Degree by Osmania University on successful completion of all Theory Courses, Practical Courses, Viva Voce and Project Report. The Division / Class will be awarded as per the STLW (A) norms.

10. Readmission for Pursuing Additional Elective Courses:

Readmission for pursuing additional elective courses in as per Osmania University norms.

- Total number of credits to be completed to be eligible for the award of MBA degree: Total number of credits at the end of fourth semester (MBA-Day): 27 + 27 + 34 +35 = 123
- 12. Awarding Cumulative Grade Point Average (CGPA): on par with University norms The absolute grading mechanism is followed in mapping the letter grades. The marks are converted to grades based on pre-determined class interval. As per the UGC

recommendations a 10-point grading system with the following letter grades are followed. The same is furnished in the following tables for Theory courses and Laboratory.

Range of marks	Grade	Grade Point				
85-100	0	8.5-10.00				
70-84	Α	7.0-8.49				
60-69	в	6.0-6.99				
55-59	С	5.5-5.99				
50-54	D	5.0-5.49				
40-49	E	4.0-4.9				
Less than 40	F					

A Student obtaining Grade F shall be considered failed and will be required to reappear the examination.

The computations of SGPA and CGPA are followed as per the UGC guidelines. The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

 $SGPA(Si) = \Sigma(Ci \times Gi) / \Sigma Ci$

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a programme, i.e.

 $CGPA = \Sigma(Ci \times Si) / \Sigma Ci$

Where Si is the SGPA of the ith semester andC₁ is the total number of credits in that semester.

13. General Clause:

It may be noted that beside the above specified rules and regulations all the other rules and regulations are in force and applicable to semester system in Post-Graduate courses in Osmania University will be applicable as amended from time to time by the STLW. The students shall abide by all such Rules and Regulations.

STANLEY	COLLEGE OF ENGIN (Private Un-aided Non-minor (All eligible UG courses a Affiliated to Osmania Unive	EERING & TECHNOLOGY rity Autonomous Institution) re accredited by NBA & NAAC rsity and Approved by AICTE	Y FOR WOMEN with 'A' grade)
Estd.2008			02.02.2022
MBA -	I Sem - I Internal Exan	ninations for the A.Y-20	021-2022
MIDA -	1.000		
		01.30-02.30PM	03.30-4.30PM
Date / Time	11.00-12.00 Noon		Marketing
07.02.2022	Management & Organizational Behaviour	Accounting for Management	Management
		IT Applications for	
08.02.2022	Business Law & Ethics/ Managerial Economics	Management/ Business Communication	
			Gatyot
	0.,		Principal
Wed	ly		Principal
file de COE	ly		Principal

Estd 2008

COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (Private Un-aided Non-minority Autonomous Institution) (All eligible UG courses are accredited by NBA & NAAC with 'A' grade) Affiliated to Osmania University and Approved by AICTE

STA

17.12.22

MBA - I Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	10.00-11.00 AM	12.00-01.00PM
22.12.2022	Management & Organizational Behaviour	Accounting for Management
23.12.2022	Marketing Management	Business Law & Ethics/ Managerial Economics
24.12.2022	Business Communication	

10 hardi

Principal/COE

Copy to HODs:

CIE award list 2021-22 and 2022-23

		Estd. 200	в	Attributed to	Osmanu I	h 'A' Grade 3				
				FIN	AL INTER	NAL MARK	S			
	Course : MBA		1	Branch : MBA			Sem : II SEM	И		
S.No.	Hall Ticket No.	HRM	FM	BRM	IB	ST MGMT	RM	MP	Total	
1	160621672001	27	29	20	22		24	85	207	
2	160621672002	38	40	40	40	40		95	293	
3	160621672003	40	39	40	39		39	90	287	
4	160621672004	29	25	26	31	28		80	219	
5	160621672005	37	35	40	39	40		95	286	
6	160621672006	33	35	33	36	34		83	254	
7	160621672007	40	31	40	40	40		97	288	
8	160621672008	37	36	40	40	40		90	283	
9	160621672009	39	40	40	40	40		95	294	
10	160621672010	31	26	24	29		39	80	229	
11	160621672011	37	40	32	39	40		95	283	
12	160621672012	39	35	40	40		40	90	284	
13	160621672013	40	39	35	38	39		90	281	
14	160621672014	40	38	40	40		40	94	292	
15	160621672015	38	37	39	39	38		91	282	
16	160621672016	39	36	40	39	39		88	281	
17	160621672017	40	40	40	35	37		88	280	
18	160621672018	38	29	37	29	32		87	252	
19	160621672019	40	38	37	39	37		85	276	
20	160621672020	40	35	39	34	40		88	276	
21	160621672021	40	40	40	39		. 38	92	289	
22	160621672022	40	37	40	39	40		98	294	
23	160621672023	37	39	40	34	34		95	279	
24	160621672024	40	40	40	40		40	89	289	
25	160621672025	38	38	37	40	40		85	278	
26	160621672026	35	19	28	30		30	93	235	
27	160621672027	38	33	35	39	37		87	269	
28	160621672028	35	33	29	37		39	90	263	

No				FIN	AL INTE	RNAL MARK	(S		
No	Course : MBA			Branch : MBA		MAL MAR	Sem : II SE	м	
.140.	Hall Ticket No.	HRM	FM	BRM	IB	ST MGMT	RM	MD	Tetal
29	160621672029	40	35	38	38	ST MOMT	40		Total
30	160621672031	40	36	40	40	10	40	88	279
31	160621672032	40	40	40	40	40	00	95	291
32	160621672033	38	28	38	40		39	90	289
33	160621672034	39	36	40	40		30	94	270
34	160621672035	38	35	36	36	34	39	94	200
35	160621672036	30	32	28	35	54	27	96	2/1
36	160621672037	36	30	37	38	38	£1	89	240
37	160621672039	38	33	37	36		37	88	269
38	160621672040	39	36	40	40	40	57	97	292
39	160621672041	39	31	39	39		38	60	246
40	160621672042	39	26	36	38	39		82	260
41	160621672043	40	39	40	40		40	98	297
42	160621672044	40	39	40	40	40		84	283
43	160621672045	35	34	38	37	38		86	268
44	160621672046	40	33	40	40	40		93	286
45	160621672047	38	25	32	34	31		80	240
46	160621672048	39	35	40	40	40		85	279
47	160621672049	40	37	38	40		40	93	288
48	160621672050	40	38	40	39	39		85	281
49	160621672051	39	39	39	40	40		86	283
50	160621672052	37	40	38	34		38	95	282
51	160621672053	38	40	40	39	39		92	288
52	160621672054	40	40	39	37		36	92	284
53	160621672055	40	35	38	40	40		96	289
54	160621672056	40	40	40	40		40	92	292
55	160621672057	37	30	30	30	-	30	88	245

		MBA III Semester (onsolid	atod M	and to for	t de la	Nana							
S.No	HT Number	Name	OM	EB	QTBD	IM	см	PBM	IF	OD	PDM	InM	Project Synopsis	Seminar on Contemp rary Topics
1	160622672001	A Deekshitha	40	40	40		40		-	39		40	50	46
2	160622672002	Afra Tabassum	36	39	37	36			40			38	48	47
3	160622672003	Ailla Joshna Goud	26	37	33		29			35		36	48	44
4	160622672004	Alakunta Vani	35	38	36		30			33		39	40	35
5	160622672005	Aliya Roshan	34	40	36	39			40			39	48	48
6	160622672006	Arjumand A W	39	39	40		40			40		39	50	50
7	160622672007	Ayesha Anam	38	40	36	-	40			40		38	50	47
8	160622672008	B Harshitha	33	28	34	33			26			25	44	45
9	160622672009	Bandla Ushaswini	32	37	35		31			38		33	43	45
10	160622672010	Dasoju Manisha	40	38	39	38	-1. j. j.		37			40	50	46
11	160622672011	G Shreya	39	37	40	39			37			40	50	48
12	160622672012	G Sampoorna	40	38	40		39			38		39	48	45
13	160622672013	G Fairy B W	38	35	35			39			38	38	48	50
14	160622672014	G Sukhjeevan Rani	29	33	33		28			38		39	43	44
15	160622672015	Gona Mary	39	37	39	35			38			36	48	47
16	160622672016	Hajera Ansari	32	38	35		38			39		39	48	44
17	160622672017	Hanisha Thakur	35	30	31		30			36		34	49	50

S.No	HT Number	Name	OM	EB	QTBD	IM	СМ	PBM	IF	OD	PDM	InM	Project Synopsis	on Contempo rary Topics
	1 10 100 100001	rr D thi	29	36	34	38			36			35	42	45
19	160622672021	Katta Pragatni	37	31	35	38			32			37	47	47
20	160622672022	K Pooja Kailash	30	31	37	39			31			37	45	50
21	160622672023	K Pravalika	50	20	10	40			39			40	50	50
22	160622672024	Kushi Toshaniwal	40	39	40	40		-	40			39	50	50
23	160622672025	M Aishwarya	40	40	40	40		-	40			40	50	50
24	160622672026	M Jayashree	40	39	40	40	40		10	40		38	48	50
25	160622672027	M. Nandini Reddy	40	40	39		40			39	-	35	48	49
26	160622672028	M. Vikyathi	40	38	35	-	39	-	-	40	-	39	48	49
27	160622672029	Maliha Afreen	39	39	40	-	40		-	38	-	37	48	44
28	160622672030	Manne Apoorva	32	37	38	-	36		10	50	+	39	50	50
20	160622672031	Motai Indira	38	39	37	40			40	10	+	40	50	50
29	160622672032	Muna Sayeed	40	40	40	-	40	-	20	40	-	40	45	47
30	160622672033	Nagadhara Geeta	39	39	40	39			38	20	-	30	48	44
51	100022072021	N Ramya Sri	35	38	40		33		-	24		37	47	45
32	160622672035	Nameera Taranum	32	39	35		38	-		54	-	39	46	45
33	160622672655	Nanovath Akshava	34	39	35	34			36	-		20	42	44
34	160622672036	Duiari Bhayani	31	35	35		33		-	33		37	48	43
35	160622672037	Pujari Biavalika	34	36	38		29			32		20	45	45
36	160622672038	Pagilla Pravanka	38	38	39	36			39	-		20	48	47
37	160622672040	Pandala Nena	35	38	33			38	3	-	39	39	47	40
38	160622672041	Parike Sai Poojitha	26	32	28	25	;		28	-		25	42	42
39	160622672042	2 Polapalli Sirisha	30	34	32	2	28			32	-	35	45	46
40	160622672043	B P Anu Priya	27	33	3	2 3:	L		34			3:	45	- a N
41	160622672044	4 Radhika G	NU	y Ok	to Y	A	X Not	90 4	V de	A	Y	Bd	V \$	

S.No	HT Number	Name	ом	EB	QTBD	IM	см	PBM	IF	OD	PDM	InM	Project Synopsis	Seminar on Contemport rary Tonics
42	160622672045	Sai Kirthana Rana	33	36	33		35			37		38	48	45
43	160622672046	Salma Firdous	37	40	32	38			40		-	39	50	48
44	160622672047	Samiksha Varma	40	40	36		40			39		37	50	50
45	160622672048	Samreen	35	39	38	39			38			38	48	48
46	160622672049	S Vineela	30	29	26		25			23		26	40	35
47	160622672050	S Rajeshwari	37	35	35	36			35			39	45	45
48	160622672051	S Vaishnavi	37	37	37		37			39		38	50	50
49	160622672052	Tanzeel	40	39	40		40			40		40	50	50
50	160622672053	Vadinala Ravali	37	39	39	37			37			39	45	45
51	160622672054	Vemu Jahnavi	39	38	37	38			40			38	48	49
52	160622672055	Waheeda Khatoon	39	40	40	40			40			40	48	47
53	160622672056	Yasmeen Begum	33	37	36		37			40		40	48	48
54	160622672057	K Akansha Reddy	35	34	35		36			39	-	39	47	44
55	160622672058	Aqsa Ahmedi	39	38	39		38			40		38	50	45
56	160622672059	K . Sushma	40	39	40		39			40		40	50	50
58	160622672063	Musheerah F S	39	40	40	39			39			39	47	47
59	160622672064	Rida Unnisa	38	40	36	40			37			39	47	47

Hora Hora

Principal

	B.E. CSE	VI SEM Sec-A Total M	arks L	ist for t	he Aca	demic V	ar 2022	22
	CSE	VI SEM		101 101 1	ne nea	CD	al 2022-	.23
S. No.	Roll No.	NAME	MID- 1(20)	MID- 2(20)	AVG (20)	QUIZ(5)	ASSIGN (5)	TOT(30)
1	160620733001	A POOJEETHA REDDY	20	17	19	4	5	28
2	160620733002	ADVAITHA DADUVY	18	14	16	4	5	25
3	160620733003	NEHA BUDIDHA	17	2	10	3	5	18
4	160620733004	ARUTLA SRIJA	18	13	16	4	5	25
5	160620733005	AYESHA SIDDIQUA	AB	6	3	4	5	12
6	160620733006	BADAM RITHIKA	18	10	14	3	5	22
7	160620733007	BHUDTHULA SOUJANYA	19	14	17	3	5	25
8	160620733008	BOBBILI HRISHITHA	19	17	18	4	5	27
9	160620733009	BODU SHREYA	18	12	15	3	5	23
10	160620733010	CHANDA AKSHARA	20	17	19	4	5	28
11	160620733011	CHINTHALA PRANATHI	15	8	12	2	5	19
12	160620733012	DUGGI PRIYANKA	19	13	16	3	5	24
13	160620733013	ENJAM HAARTHI	14	13	14	4	5	23
14	160620733014	GOLLA SINDHUJA	18	12	15	3	5	23
15	160620733015	GOPA SHEETHAL	18	6	12	3	5	20
16	160620733016	G CHAITRA	AB	4	2	5	5	12
17	160620733017	IRUVENTI SATWIKA	19	15	17	3	5	25
18	160620733018	JANAPATI HIMAJA	20	20	20	4	5	29
19	160620733019	JANGILI MADHURIMA	AB	16	8	4	5	17
20	160620733020	JETRAM AASHRITHA	17	5	11	3	5	19
21	160620733021	K MALLIKA	20	17	19	4	5	28
22	160620733022	KADARLA SHARVANI	20	20	20	5	5	30
23	160620733023	KANTHA ANANYA	18	18	18	4	5	27

Stanley College of Engineering & Technology for Women (A)

24	160620733024	KARNAKANTI SREEJANI	16	8	12	3	5	20
25	160620733025	KARRI SAI SANJANA REDDY	19	17	18	4	5	27
26	160620733026	KESARAM MEGHANA	11	9	10	3	=	10
27	160620733027	KOTE MAMATHA	17	9	13	3	5	18
28	160620733028	KULSUM AYUB ABDUL SHAIK	AB	14	7	3	5	15
29	160620733029	MADABHOOSHI SREE LALITHA RANGA	15	10	13	4	5	22
30	160620733030	METTU SUJATHA	12	8	10	3	5	18
31	160620733031	MANEPALLI SRAVANI.	19	14	17	4	5	26
32	160620733032	MUDAVATH LAVANYA	18	16	17	4	5	26
33	160620733033	MUNAVATH NIKITHA	0	12	6	3	5	14
34	160620733034	NANDURI LALITHA S	2	ab	2	5	5	12
35	160620733035	N ALEKHYA	16	14	15	3	5	23
36	160620733036	NETHI NITHYA	19	16	18	4	5	27
37	160620733037	O NIHARIKA	20	15	18	4	5	27
38	160620733038	PERYALA ABHINAYA	16	5	11	4	5	20
39	160620733039	P. SPOORTHI REDDY	17	1	9	3	5	17
40	160620733040	P SUSHMITHA	17	9	13	3	5	21
41	160620733041	PENDEM KRITHI	17	14	16	3	5	24
42	160620733042	PERUGU RIDHI	12	12	12	3	5	20
43	160620733043	P ANAGHAA REDDY	20	15	18	4	5	27
44	160620733044	R SAI GAYATRI	12	7	10	4	5	19
45	160620733045	RAKSHITHA S N	13	5	9	3	5	17
46	160620733046	RITHIKA CHINTHA	18	5	12	3	5	20
47	160620733047	S DHURGESHWARI	16	11	14	3	5	22
48	160620733048	SATTUR AKSHITHA	17	5	11	3	5	19
49	160620733049	SHARMILA K	18	11	15	4	5	24
50	160620733050	SHREEYA M	18	9	14	4	5	23

51	160620733051	SHREEYA NITTURKAR	20	18	19	3	5	27
52	160620733052	SIMRAN G JAISWAL	16	17	17	4	5	21
53	160620733053	S KAMESWARI T	18	15	17	4	5	20
54	160620733054	S SHAISTA AIMAN	20	18	19	4	5	20
55	160620733055	TAHURA TABASSUM	18	15	17	4	5	26
56	160620733056	TASNEEM FATIMA	18	12	15	4	5	24
57	160620733057	V KAVERI	16	AB	8	AB	5	13
58	160620733058	VARANASI GAYATHRI	19	16	18	4	5	27
59	160620733059	VIJAYA SINDHOORI K	17	16	17	4	5	26
60	160620733060	V KEERTHANA	20	14	17	4	5	26
61	160620733301	S NEHA	17	11	14	4	5	23
62	160620733302	BOYALA NIHARIKA	19	18	19	4	5	28
63	160620733303	BANDARI PURNIMA	15	16	16	4	5	25
64	160620733304	VURA DIVYA	15	16	16	4	5	25
65	160620733305	JULLURI SHRIYA	17	15	16	3	5	24

CLASS INCHARGE GHOUSIA BEGUM

O HOD

Stanley College of Engineering & Technology for Women Chapel Road, Abids, Hyderabad 500001

Department of Computer Science and Engineering

Course Code: SPW1CS

M.Tech/2nd Year/3rd Sem/Major Project Phase-1

Review-1V Evaluation Sheet Title of the major project: Inleapon Identification Using Deep Learning Perhingue

Student Name: Southvika vullegerddala Roll No: 160622742112

Email id: Sathul barull good dalaros & gwail com Distribution of marks

Contact No.: 7702861784

Evaluation by	Max. Marks	Evaluation Criteria / Parameter	Marks Awarded
Suparvisor	30	Project Status / Review(s)	28
Supervisor	20	Report	18:
	10	Relevance of the Topic	09
	10	PPT Preparation	09
Departmental	10	Presentation	10
Committee	10	Question and Answers	
	10	Report Preparation	

The progress of the project work is Satisfactory/Unsatisfactory due to the following reasons

Project Convener (Guide) Name : $Dr \cdot B \vee Ramana Murthy$ $Date : <math>22|_0|_{2024}$ Signature : $\frac{1}{2}CM$

yv85g

HOD, CSE

Project Coordinator

	- MA	CHINE LEARNING I	AB	- CS	FANLE E B	YCOL	LEGE OF	NGINE	RING	AND TI	ECHN	OLOCY							
	o, Roll,N	o, Date	1-	7 - 0	1			DEP	ARTME	NT OF C	SE	SCOGY	FORW	OMEN					
	1 160620731	061 M SAMO	Rei	Exec Viv	24.	3.23	31.3.2	2 21.1			T			BE ITLYFA	RVISEM				
	2 160620733	062 ABBA ANJALI	DDY	K	Vi	vina Vina	Her Esec VI	a Rec Ex	e Viva	Res Fuel	3 11	6.06.2	3			T			
	4 160620733	063 ADAMALA VYSHI	AVI	1-	AI	AA	VVI	14	V	VV	V N	Exer VI	n litee a	Care Viva II	e Earry V	ha Rec 10	Ner Vira II.	a la classica	
	5 1606207330	65 ANNEM ANUHYA	lika	K	AF	TA	222	LL	V	1	X	VV			++-			F. R. See Vilva	
	7 1606207330	55 ASNA MUSKAAN		5	N			12L	M		T	22							
	8 16052073306	8 SAMIYA ASHRAF K	HAN A	AA	AA	A	AAA	AA	A	14	HA	AA				++			
î t	10 16062073306	9 BHUKYA MANI PRI	YA A	AA	VIL	V	A A A	KE	Y	VV	-V	50	+						
I F	11 160620733071	CHANDU VACUL	A	AA	AA	A	AAA	A.A	A	17	Y	VV				++			
F	12 160520733072	CHIKKA HEMIKA	A	AA	AA	A	21º	Y	1 to	AA	V	VV		-					
	4 160620733073	D. SOWJANYA			VV	T	Y	2 V	VI		- F	AB	+						
	5 160620733075	FAREEHA SAYEED	A		AA	AN	112	22	11	14	A	AA			++-	++			
17	160620733076	FIZA ABDUL AZIZ			TA	F F	AA	VV	VL	VI	V	P A							
18	160620733078	GOSI VARSHITHA	DYA	AAF	AC	AV	1 VV	AA	A	14	V	VV							
20	160620733079	GOUREDDY SINDHU	A	AAF	TÀ	XX	XX	VV	T	100	V	VV							
21	160620733080	GUMMALLA SREYA	A	AAF	AA	AA	AA		L	14	X	VV							
22	160620733082	P SUMANA REDDY	AF	AAA	A	AV	VV	11	1.	VI	V	VV			-				
23	160620733083	(NITHISHA	AA	AA	A	AV	122		L	VI	V	VV							
25	160620733084 k	AVALI SAI KEERTHI	AA	AA	A	AA	AA	V	A	AA	V	VV	1.5						
26	160620733085 K	AMBLE SHIVANI	TL	AL	A	20	AA	Y	A	AF	A	AA				++			
27	160620733087 K	J KEERTHI	L	A	A.	AV	VVI	V	A	A-f	V	20		-					
28	160620733088 K	AASHRITHA REDDY	AA	AA	AH	AA	AA	VI	1	1.F.	la	00							

7

N/ 51

	S.N	Date	1	.7.7	50.	10	71	2 -	7	07	01	. 4	. 2 7	PD	.06	23	16 .	061	13										_		
	0. Koll.No	0.	-	1.2	- Ann	In a	Erm A	a 2	1 Store	-	Ber	TEres	Ivive	liter	Exer	Vite	Rec	Exec	Vica R	er Es	ee Viv	a Rec	Esec	Viva Re	re Ka	ec Vi	iva Re	e Ezec	Vita		
	30 1606307330	NANDUNURI SRUIA	IA I	1.	1	10 I	Lan I	K	1	1	L	L	V	1	~	~	~	~	1		-	-		-			-	-	-		
	31 1606207330	191 KAVITHA MANGALG	1	AA	A	A	AF	AA	A	A	M	A	A	A	A	A	A	0	5	_	-	-	-		+	-					
1	32 1606207330	92 KOPPULA ESHWARI		AR	A	1	h	TU	N	t	K	V	L	A	A.	A	A	9	A	_	-	-	-		-	-	+	+	-		
	33 1606207330	93 KOTHA SREMUKHI	4	AA	A	A	AI	12	V	r	N	L	V	V	V	V	1	~	1	-	-	-	-	-	-	-	-		-		
L	34 16062073305	MALKU VARSHINI	1	V	1	AI	74	12	V	V	V	V	V	2	V	V	~	1	4	-	-	-	-	-							
L	35 16062073309	MANPURI VENNELA		V	1	A	A f	1/~	11	V	V	V	V	12	~		X	~	4		-	-	1.0	-							
F	3/1 16062073309	6 MARIYAM FATIMA	11	AA	A	V	t	A	A	A	A	A	A	4	4	~	~	V	V	-		-	-								
1	16062073309	7 M AFREEN NIKHATH		V		f)	h f	A	A	A	A	A	A.	A	41	F	~	V	4			+	+				12			1	
P	160620733098	MOKILA CHAITHANY	AF	A	1	HT :	H +	yv	V	V	V	1V	~	A	0	+1	V		~	-	-	-	-								
P	160620733099	MUTHYAM HARSHITH	AL	T	n	1	V	Y	V	V	V	V	V	V	V	-	X	~	4	-		-	-							1	
	160620733100	NARLAGIRI RACHANA	4 4-1	A	-1	al	AK	V	Y	~	1	A	1	V	V	1	Y	V	~		-	-	-				-			1	
10	160620733101	MAIGA ANJALI	0	10	0	00	10	K	X	Y	A	H	+-1	K	1	-	V	V	-	-	-	-								1	
1 11	160620733102	BUARCHING	4-	1	TT	0 0	10	K	V	V	Y	K	K	X	K	2	Y	~	./	11		-	-				-				
44	160620733103	P SATHUIKA REDOV	1	1	-	1	1	×	X	2	X	A	A	1×	K		×	-	V	-	-	-							-	-	
45	160610123104	DELLATE ANOLISHEA	0	6	DI	1	1	X	Y	V		A	1	N	K	V	V	~	V		-	-								1	
46	160630733106	MARIA	E	D.	AA	1	Tu	K	2	X	1	TT.	T	E	1	1	A	D	0	-									-	-	
47	160520233107	PERUKA SHALINI	6	DA.			A	1.	1	V	2	V	V	A	A	A	1	V	V										-	-	
48	160620733108	PILLY ASHRITHA	11	N		h	10	2	1	1	Ž	-	V	ti	PL	12	1	V	1								1			-	
49	160520733109	PUJALA NISHITHA		N	11	44	A	1	X	1	A	A	A	A	A	A		V	V		-								-	-	
30	160620733110 P	ULLISANI SATVIKA		1	1	ti	TV	V	N	Ž	A	A	A	A	A	0	X	V			*	-								-	
31	160620733111 5	AHITHI	A	AL	AL	tu	T	C	V	V	1	1	V	2	V	2	V	V												-	
52	160620733112	MEGHANA		X	1	00	A	A	A.	A	1	1	V	1	F	10	A	A	A		-	-	1							-	
53 3	160620733113 5	INGASANI SOUMYA		V	A	h	V	N	1	1	1	1	V	1	1	1	1	1	1		8				10.1	1-1	-			-	
34 3	60620733114 TA	ALARI LASYA		V	1	A	A	X	2	V	E	E	~	V	1	iv	X	V	V				1	1	153	-	-				
55 2	60520733115 UP	PU AKSHAYA SREE		X	C	A	A	V	1	1	1	-	V	V	1	1	i.	X	1	2.5	-	-	-	100	100						
56. 1	50620783116 V	V VIDYADHARI	,	1	1	X	1	1	1	V	A	A	A	1	1	1	V	1	V	-	3.6		1			-				-	
57 14	COE307223117 VA	NAM PAVANT	A	D F	10	D	A	V	1	1	2	1	L	1	K	K	V	~	1	-	-			1	-	-	-		-	-	
58	100000735117 VA				1		U	6	A I	5	-	2	1	-	X	V		1	1		-		-	-	-	-	-	-	-	-	
50	100620733118 VE	NUN ALCHIYA	0	ALA	10	6	0	1		1	N	A	A	N	0	0		V			-	-	-	-		-				-	
cn .	100020733119 YEI	LLANDULA SAI SIRI	5		1 +	1	1	-	~	A	T	T	T	H.	P	T	V	V	1	-	-		-	-		1	-	1000	-	-	
	160620733120 YU	SKA RAFAT 7	1	TP	T	14	1	A	+1-	1	-	2	-	Y	F	-	V	V	V	-	-	-	-	-						-	
10	160620733306 KOI	RICHERLA SUPRIYA	31	+ A	V	Te	V	V	V	-		V	K	V	V	P	H	1	41	-	11	-		-	-				-	-	
12	160620733307 KA1	VALI SONIKA	71	+ F	A	E	A	A	4 -	EV.	A	A	n	V	V	K	V	V	V			-	-	-	-		-	1	-	-	
3 1	160620733308 KEE	RTHANA	11	AP	A	A	4	V	VI	~	A	A	A	++	4	H	V	V	V			-				1. 3-			1		
4 1	160620733309 GOT	TANUKKULA NAVYA		L	V	V	V	V	V	V	V	V	V	A	A	-7	Y	V	V	-	1	- 1	-			1	1		_		
5)	60620733310 A A	RCHANA		L	V	1V	1/	1/	V	V	V	V	V	V	V	V	N	V	V		-	-	-			1	-	1 1	-		

STANLEY College of Engineering & Technology for Women (Autonomous) Chapel Road, Abids, Hyderabad 500001

Department of Computer Science and Engineering

B. E/CSE/ VIII Semester - Project Work Phase II

Internal Review -II

Student Name: Guus Dravatika Roll No: 16061993345 Met Salteethi Proposed Title:

Voice have gender secondition using groundive adverse at methods .

Dr. M. Swapna

Date of review:

S.	Category	Max marks	Marks Awarded
NO.	A REAL PROPERTY OF THE PARTY OF	10	017
1.	Data Sets, Data Set Accuracy	10	and a second
2	Data Pre-processing	10	2
3	Learning Algorithms Justification	20	1 pag
4	Impact of Algorithms with reference to your project	20	19
5.	Project Specifications	20	10 197
6.	Prototype Execution	20	
7	Total	100	194

The progress of the Major Project Phase -11 is Satisfactory/Unsatisfactory due to the following reasons

Therefore, it is recommended to Submit/ Submit with minor revisions/ Cancel the project

NN. Signature of the

Project Coordinator

PRC Members:1

lin arure of the HOD

NAMES OF A STREET OF A STREET OF

Copy to Pr Cale	Linder	77-1 0.00	cc 70 30	05.07.22		04.07.22	A 1000	Time	Date /			02.07.22	01.07.22	30.06.22		29.06.22	Time	Date /	
fop's		IMI	nu	DAA	1 mm	CD	10:30 AM	9:30 AM -	CSE-V	200		M-III	DBMS	SO		ETCE	10:30 AM	CSE -	-
₹ ECE		SI&SS		ML	~17	CN	01.00 PM	12.00Noon -	VI SEM				CO	S&S	1.00 T	C.S. A	01 00 PM	IV SEM	
	æ	IOTS		DCCN	JA.	R	10:30 AM	9:30 AM -	ECE-			TIME	ENT	PLIC	CUA	INV OC:01	- 9:30 AM	ECE	
EEE		OOP JAVA		EMI	DSDV		01.00 PM	17 00Noon	VI SEM			EMI	Cac	CRC	AEC	01.00 PM	- 12.00Noon	- IV SEM	
	4	R Prog.	N TON	DCDA	PS-II	TATV DOTAV	10-30 AM -		EEE -	1		DELD	ESE	1	ETCE	10:30 AM	- 9:30 AM	EEE -	
"	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IAVA	UEE	TIPM	EMI	01.00 PM	12.00Noon -	TATES -	VISEM			PE	EM-II		PS-I	01.00 PM	- 12.00Noon	IV SEM	
* 0		RE	ML		ES	10:30 AM	9:30 AM -	11-V				OR	JAVA Prg	20	DC .	10:30 AM	- 9:30 AM	IT-	No.
BC S		NLP	DAA		Dis. Sys	01.00 PM	12.00Noon -	ISEM			The second s	COMP	S&S	000	DBC	01.00 PM	13 DONIA	VSEM	
, atas	00	5	DS	101	IOT	10:30 AM	9:30 AM -	CME -		SWRG	THEFT	MIII	OOP JAVA	EICE	DTOP AN	10-30 AM -	CIVILE		
Principal	SS	1	DM&DW	CN	- NI	01.00 PM	12.00Noon	VI SEM			COMP		S&S	F&A	ULOU PM	12.00Noon -	- IV SEM	WICHNA	
ter										1 - 4 - 1	CN		so	DAA	10:30 AM	9:30 AM -	AIDS	and the second s	
Xit											COMP		FDS	F&A	01.00 PM	12.00Noon	-IV SEM	No. of the	1.00.2022

4

B.E -IV and VI Sem - II Internal Examination Tim Stanley College of Engineering and Technology for Women 1

Date:13.10.2022

B.E - III Sem - I Internal Examinations for the A.Y-2022-2023

Date/	CSE -	III SEM	ECE -	III SEM	EEE -	III SEM	IT - I	II SEM	CME	IIISEM	AIDC	
Time	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 -	02.00 - 03 30PM	09.30 -	02.00 -	09.30 -	02.00 -
27.10.22	M-III (P&S)	Dis.Maths	ME&A	PTSP	ECA	PTSP	P&S	Die Metho	M-III	03.30PM	11.00AM	03.30PM
28 10 22	DE	OOPs			The Res William			OOD-	(P&S)	Dis.Maths	(P&S)	Dis.Maths
20.10.22	DE	using Java	EDC	EMTL	EMF	SSA	DBMS	using	DE	OOPs using Java	DBMS	OOPs using Java
29.10.22	СО		DSD		AE	FCS	DELD	ET	Concepts in COMP	ET	Concepts in COMP	ET

Internal Examination (IE) - FN -09.30-10.45AM / AN-01.30 - 02.45PM Quiz(Q) - FN-10.50-11.00AM -/ AN-02.50-3.00PM

Gatyphaerdel.

Principal/COE

Date:23.03.23

Datal	CSE - I	V SEM	ECE - I	IV SEM	EEE - I	V SEM	IT - IV	V SEM	CME -	IV SEM	AIDS -	IV SEM
Time	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM
01.04.23	AI	ALC	AEC	S&S	OOP USING JAVA	EM-I	ТА	FDIP	DAA	ALC	AI & R	DE
03.04.23	ETCS	ET	AWP	-	ETC	-	-	TS&S	-	ETC	-	DS
04.04.23	os	DBMS	ICA	COA	CS	STLD	os	COMP	OS	DBMS	OS	CN

B.E - IV Sem - I Internal Examinations for the A.Y-2022-2023

Internal Examination (IE) - FN -09.30-10.45AM / AN-02.00 - 03.15PM Quiz(Q) - FN-10.50-11.00AM -/ AN-03.20-3.30PM

B.V. 4. 23/3/2023

WPS MINI PROJECT (Project Based learning)

Team 1 A Traveler's friend: Wanderlust 160617733153 Meghana Mangipudi 160617733142 K Apoorva

160617733124 B Srujana Eleena

Team 2

Let's Get Cooking: Recipes and Cooking Hacks 160617733176 Zeenat Sehar 160617733171 Syeda Aayesha Kaleem 160617733152 MD Saba Begum

Team 3

Hotel Management System 160617733130 D. Harshitha 160617733146 K. Mansi 160617733162 P. Samatha

Leam 4

Hospital management system 160617733175 Y. Grace 160617733301 K. Pawani 160617733302 N. Jyothirmay

CTOP TOT

Voting ____m 160617733127 Challa Sneha 160617733129 Chinthakindi Srilekha 160617733148 Kolipaka Mounika

Team 6 Stock maintainence system 160617733147 Kangari Anusha 160617733168 Sikinimetla Chandana 160617733136 Gandra Akhila

Team 7

Event Management 160617733122 Asma Fatima 160617733157 Nida Fatima 160617733158 Nikhat Parveen

Team 8

CAMPUS LIAISON 160617733126 B. Jayanthi 160617733123 A. Soniya 160617733161 P. Keerthana

Team 9

Wedding planner website 16061773163 R. Akhila 160617733178 Sameeha jaleel 160617733304 Fizza naqvi

Team 10

Online Car Rental System 160617733121 A. Vandana 160617733132 D.C. Jhansi Rani 160617733160 Pendyala Nikhila

Scanned by CamScanner

- 1-	=	5	3	-	21	26	25	24	12	12	=	10	19	=	17	*	15	=	=	-	=	-	• •		-	5		-	1	-	1					
160611733098	160621733097	160621733096	160621733095	160621733094	160621733093	160621733092	160621733091	160621733090	160621733089	160621733088	160621733087	160621733086	160621733085	160621733084	160621733083	160621733082	160621733081	160621733000	160621733079	160621733077	160621733076	160621733075	A LONG LA	160621733972	160621733071	160621733070	160621733069	160621733068	160621733067	160621733066		No. of	Branch			
MALIHA SUFI	GEETHA	M ANUSUYA	KAVURI SOWMIKA	KANDHI BHASHITA	BHAVANI	MADHURI	K MEGHANA	MANNAVA	HARSAH	HIMADINDU	UNIALA NOVIO	MAHMOOD	EMIREDDY KAVY/	NITHYA	PRIYANKA	D DEEPSHEI	MOHANAPRIYA	MAHATHI	LJAYASREE	BEGARY DEEPTHI	BEGARI MYTHILY	BARIGELA SREEJA	BANOTH SWATHI	ANOUSHKA	NAVYASRI	AMINA FATIMA	HEMALATHA	KULKARNI	AILA PALLAVI	CHAITANYA SIRI	NAMES		CSEB			-
23	10	12	=	5	N	1	1			-		=	E	N	-	H	2	H	H	2	=			H H	¥	24	12	21	19	R	1 - 3		F			
H	10	13	10			E						1	1	12	3	19	11	21	-	2	-			2 11	24	20	24	2	13	20	MI					
	t	t	t	t	t	t	t	1		1		1	f	t	-	-			1	1	1	1	t	+							NU NI					
22				-		: 12	: :	: 1	5 3	-		1 7	=	E	16	11	=	22	20	=	=	= 1		2 2	24	=	23	22	16	10	5 0 2					
-								-	-				-	-	-	-	-	-	-	-	-				3	*	-	-	-	-	Z	D				
5						-		-							-	u	un	un	-		-				u			-	un		u u As					
-				un 1	-	-				un I		a u		u	UA.	Uh	UN	u	un '	-				a ca	un.	UA .	-		-	-	* > 0					
Ŧ		18	2	1	8	×	×	×	x	×	19	2	X	37	19	36	X	35	2	35	JI I	¥ N	: 1	2 2	37	×	×	5	3	¥ i	10					
Y	24	10	21	19	-	u I	ŭ	¥	>	Ľ	15	21	14	13	5	E .	17	24	16	ä	=	1	:	24	5	20	24	2	2	5 1	1 - 1		-			
1	23	-	=	25	=	Ľ	23	2	2	2	12	2 3	5 2	ž	=	R.	×	24	8	8	5	9 4	1	2 2	ŭ,	×	2	ä	-	3 6			\neg			
h		-	-		-	-	-	-	-	M	-			-	-	1	-	2	-		-				12		2	-		= 5	02		1			
H	4	4	-	-	-	-	-	-	-	-	-	2 1			-	1.	-	-	-	-	-		+	10	-	-	-	-	-		182	18		•		
ł	UA.	a.	-	un	-	un	in	-	u.		u	UA 1				un	5	un	ue .	-	-	u 0			5	u.	-		-	A 4	s às	11			\$	
1	UA	UR	5	CA.	UR .	UN	-	sa	un	5	(A)	un i			- 04	-	w	un .	un	1.4	-	9h U	•	- 5	UA.	14	un	-	-	a (4	> 0	16				
1	96	11	32	35	27	39	19	ŝ	¥	5	브	ä :	= 1		1	×	a	jų.	ži	X	Ξ	3 3		13	¥	芄	×	ž i	-	5 8	5	\square			2	
	ti .	5	12	10	10	24	22	23	ß	21	*	10	- 1		17	12	-	2	12	≝ 	-	1 1		1 11	24 2	16 2	8			5 14		ŀŀ	-12	Change 1		
	-	0	5	9	-	-	*	-	=	0		9	-	+	+	-	f	-	-	-	-	+	Ť	1	-	-	1	1	T	N N	M		Mar	el Ro	í.	
1	24	10	-	15	-	12	2	8	12	B	0.	÷	5 1	2 0	: 0	1	13	10	2	N	-	2 7	: :	13	34	io i	= 1	8	: 1	5 04	e v	P	1	ad,Al		
A	-	-	-	-		3	-	-	-	3	~	3	u 1	-		-	-	3	5	ч	-				-	-	-				24	5	fler	Side, H		
B	-		-	~		-		-		-	u	4	5				-	-	u.	5	~		-		4	-	-	-			s S C	F	-	yden	-	
-	-		-	-	-	-	-	-	-	5	-	-	-			Ĭ	1		5	5	~				4					8	13	F	-den	thad		
	14	1 2	23	11	13	3	5	1	10	12	-	-	-				1	12	-	19	2	2 :		3 11	2	2	-	= 3		i II	MI	+	1 X	Sur V		
	-			8	-	142	10	10	2	1	-	2	19	12 1		1 2	-	13	15	=	2	-	. 1	3 12	u	=	2	3 2	: 1	1	MD	E	1.2	Yomo		
	F	1	+	+	f	f	T	t	=	t	1			1		T														15	MD		24			
	ī	: 1	1 1	: 3	5	×	Ľ	1	1	12	15	ii ii	5	2	8 3	1	18	C	18	13	12	3	0 1	1	¥	8	= 1	5 3		N I	<> A	SSAL	8			
	F			-	-	+	+	+	-	-	-	-	*	-	-		-	-	-	-	-					-					u À		f		4	
	ŀ		-		-	10					-		3	-							LA	a 1			UA	un					2	F	1			
	H										1 12	2	12	×	2 :	= 1	1 2	1	12	2	1X	2	- 1	x x	×	x	8	1		\$	ΤJ					
	H	3 1				+	2 0		2		-	24	19	¥	2	10	3 1	: 14	24	11	14	23	1	2 2	24	18	3	3 5	6 3	i U	- M	-	1			
	ł	E I		10		- 1	3 U	4 10	1	3 5	: *	17	24	5	u :	5 1	3 5	1		16	13	3	+	명 번	법	13	# 1	1	1	100	NN	H				
	I		-	1	+	+	+	-	1	4	+	-		-				1 100	-	-	=	11			×	=	2		3 2	11	0 2	_	1			
	1	14	5	= !	= •	+	r 3	2 2		3 0		-	-	-	-	0	-			-			t		-	N					12	SR	1			
		-	-		-	-		+					-	-	-			2 A	10	5	5	54	1	un 14	3	ua .	5	-		n Un	us Às		1			
2	.	-	5	-	-	5	-					, un	u	-	-	-		a 04	- un	1.0	-	un	-	un un	ia.	-	ua	-			> C 4	+	+			
1	2		=	¥	-	=	-	2	8	# 1	1	12	¥	S.	×	8	3 3	1 7	1 M	4	3	18	•	2 2	39	2	=	8			- 0 x	+	+			
1.															-	+	+	+	+	-	+	\square	ŭ	+	+	H	+	+	+	10	E N	H	+			
									-	-	+	+	1		-	+	+	+	+	+	+	\square	ř.	+	+	Н	-	+	+	14	M	F	1			
^	~				4	-	+	+	+	+	+	+	+	-	H	+	+	+	t	1			3						1	U	2 < >	3L	1			
1	4	-		-	+	+	+	+	+	+	+	T	T	T		1	T	T	T	T	Γ		2								qui	n				
-	٢	-	-	-	-	+	+	+	+	+	+	+	T						T		F				F				1	-	s		4			
	1	-	-	-	-		1		1			1	T	-			-	-	+	+	+		-		-	H		-	+	0	101		-			
		E						-	-	-	+	+	+	-	-		-			-		-	*	11	-		2	-	2	-	50	T	1			
1	1	11	2	¥	11	=	37	37	16	¥	3	6 5	-	-	-		-		+	+	1		-		E	-	-	-		-	CE	E	-			
-	1000	and the second s	and in case of	1000	100	100	- 11 C	100		100	10 E	and the second	1.00	1.14	120	125	12 E	2110	112	e 11 25	112	120	122	100 100	11.5	1.54	100	-	14	ne († 18	I S C	1941				

1	-	-	-	9	8	65	1	10	2	1	100	13	1	19	8	33	x	8	2	SI	8	3	\$	3	46	4	1	-	-	-	1	=	1	-	4	×	B		
	160621733313	160621733312	160621733311	160621733310	160631733309	160621733308	160621733130	160621733129	100621733128	10101110111	100011733126	10001120120	100021733124	100021733123	160621733122	160621733121	160621733120	160621733119	160621733118	160621733117	160621733116	160621733115	160621733114	160621733113	1606217331112	160621733111	160621733110	160611733109	160621733108	160631733107	16062171114	160621771104	CBICCLEMAN C	201661120001	101027123001	100021733100	160621 TEMBEL	1	
	PRAVALIKA	VANVEMOS	KURAPATI VINITHA	ARELLA HARIKA	AISHWARYA	JEEVANI	LASYA	TIMA COMMIN	VAKA CHARTHA	THOTA SRIYA	VAISHNAVI	T V ANUHYA	TTRISHA	AHMED	IVOTEDUA	CUBLIA CUBCE AND	ANCHILLA SHKUTH	SANJANA GAVADA	ISHAQ	S.SHIVAANI SHRI	ROMANA TASKEEN	SATHVIKA	KEERTHANA	KALASAPUR	PEMMA SRIVALLI	P RAAGA PRIYA	ABDUL HALEEM	MANASWINI	NIDA MINHAJ	CHANDHANA	N SOUMYA	MUNEERA HABEE?	VIHABIKA	PRASINA	RENNY	WAINIT	LAKUMA	Californi	
	8	11	10	=	1.	B	E	ţ.	1		10	-	21	1 2	1=	1=	1 3	2	15	22	11	=	21	25	20		2	= -	10	1	1	-	-	12	R	0	•	H -	X
~	8	16	2	=	1	F	: 3	J	-		15	2	=	2 2	: 1	-	: 2	12	10	23	23	9	20	24	22	16	2	2	= =	-	10	10	19	=	19	-	5	5	2
X	F	F	F	F	F	F	F	1	1	1	1	1	1	1	T	T	T	T	F					1	1	1	1	T	1	1	1	+	+	F	H	H	H	2	E A
81	-	17	19	-	-	-12	1	4	-	-	C	20	E	35	=	= 1	10	12	-	Ľ	Ľ	-	21	25	2	-	X	5 3	=	-	B	=	16	2	10	-	-	u c	VQ
I I	1	1-	1	1	1.	1		1	-	-	3	-	5	-	-	-			-	-	-	-	-	-	-	-	5				1-	-	-	-	-	4	~	-	V III
H	F	1º	#	-	+	F	-	-	UA I	UN .		5	10	-	-	+	-		-	-		-	-	-	UN	UR I	-	-	-	-	1 LA	-	-	-	-	UN I	-		sc
X	#	f	f.	Ŧ	f.	f.		1	1	8 11	5 2	5 3	5	-	#	#	#	1-		-		2	4	3 4	-	-	; †:		1	3 2			2	-	F	1 II	Ţ.	1-1	5
-0	*	t	f	f.		5		3	13	14	8	1 23	2	2	ŧ,				=	2	7 23	-	1	1 24	-		2			12	12	12	1	=	24	11	=	- 1	M
	L	-	1	=	20	>	=	15	17	3	Ξ	2	22	23	=	21	2 2	: =	1	12	25	Ξ	21	24	19	18	2 1	2 3	-	12	=	2	=	I	19	16	Z L	14 M	
	F	1	1	1	1	-	1	1	1	H	9	9	Ū.	1	1	1	Ţ	F	F	F	A	9	4	1	4	1	T	Ŧ	F	F	F	A	4	4	1	1	1	2	MA
	+	=	4	n	8	=	=	14	15	31	1	2	25	8	-	8	1 20	1		E	¥	5	E	×	5	-	a 1	-	=	E	1	24	=	=	-	4	-	0	VID
0	ł	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1	-	-	-	-	-	-	-			1.	1.	-	5	-	-	-	1	#	N	H
¥		-	4	3	5	0	5	5	-	E	-	5	-	5	5	-	-			-	-	5	un.	5	5	5	5 4		-	u	-		5	-		-	-	20	2
1	1	36	32	36	U	14	35	¥	19	30	=	H	H	91	Ξ	er.	2V	2 3	1. 19	77	åſ	17	77	¥	ы	32	8	= ¥	×	×	35	46	35	23	31	=	5	- 2	1
		20 2	12 A	101	=	12 A	19 1	10 2	0	12 -	12	11	23 2	25 25	10	23	22 2	10 1		12	25 2	0	19	24 21	5	=	2 2		0	13	11	12	=	3	= -		1 1	- 2	1
		ř		F	Ť	Ť	Ē	Ē	f	f	t	ť	t	ť	1	1	ť	ť	ť	Ť	Ť	t	ť	Í	đ	Ť	ť	Ť	Ť	ľ	Ť	Í	1	1	ť	ť	1 LA	M	1
A	F	8		19	12	6	16	16	6	12	5	21	z	ы		11	2	50		14	u	=	10	벖	-	=	H N	1 11	-	=	11	=	ū.	=	8 3	-	- 11	0.2	-
An	1	-	-	-	-	2	2	-	-			-	-	-	-	-	-	-	+		-	-	-	-	-	-	+	-		-	-	-	-	-	-	1		E I	15
1		1 3	3	-		E	5	3 3	1.	+		1.		-	5	5 5	5			1 3	~	5	5		-	-	1		5	5	5		-	-		1	1 14	SC	4
		1	17	32	25	116	H	19	t	1		T	3	×	23	15	36	10	10	: 3	90	24	12	37	30	14	1	1 2	24	30	33	11	36	16	5 14	: 1	: =	17	
		11	8	13	11	30	19	=	13	8 3	1 =	=	11	ü	5	30	=	3 1	= =	: 3	Ľ	15	20	16	Ā	5	8 :	: 3	-	5	5	20	3	2	-		K K	MI	Π
		23	21	10	21	1	10	1	-	-	1	1	1 2	23	15	ŭ	H	2	8 1	= =	1	61	=	2	2	¥	= :	5 15	1	19	21	24	21	1	8 3	-	1 III	M2 N	11
		-	+-	+-	-	+=	-	+	+	+	te	1	H	12	=	H	=	=,	;	1 1	2	3	=	19	5		21	1 1	=	5	R	11			1=	=	H H	10	10
		-	t	t	t	t	÷	t	1.	-		÷	Ē	-	-	-	*	-	-		F	-	-	UA.	-	-			-	-	-	-	-			Ē	-	150	SAIS
N	-	u	-		-	F		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(m) (-	-	-	-	-	-		-	s s	11
E	1	-	1		+	+	-	+	1:	-		1				5	5	5			5 2	-	×	2	3	× ·	3 1			-	4		-			1.	-	L L	11
	*	1	+	1	#	1		#		-	1	╬		12	-	* 24	\$ 21	-	25	1 2	ti ti	t	11	23	-	-	20	10	1-	10	12	=	2	=		1.	8	- M	H
		1		T	1	T	1	1	4	10	-	-	-	13	Ľ	25	22	12	2	1 2	2	F	21	Ħ	=	2	2 1	10		Ľ	11	ŭ	2	1	5 =	0	H	2 3	
		F	+	+	+	+	+	+	+	+	+	+	+	1	=	12		-	2	1 10	1	+	H	11	=	=	-	=	-	=	=	H		=	1-	1-	n n	50	11
10	2	-F	#	4	+	+	H.		=	-	=	+	::	1.	-	-	-	-	-	1		+	-	-	-	-	-		1-	Ē	-	-	-	::	1-	t	-	N Q	DSR
. Th	0	St.	-	-	1	J.	-	t	-		1	Ţ	-	t	5	5	5	-		-		Þ	5	3	4	54	-		-	5	u	4	-		-	-	-	s	
1	1	T	-	-	-	Ŧ	-	1	-	-	-	1	÷	-	-	5	5 2	-	-	-	1-	F	5 4	5 3	-	5	-		-	-	-	-	-	-	1	-	-	A C I	
		Y	=	Ē	5	-	-	4	4	=	-	1	1	#	1	F	F	-	+	Ŧ	+	-	f	F	-	-	-	+	f	f	F	-	+	+	F	f	11	N	H
		1	4	+	+	-	+	+	+	4	+	1	+	+	f	t	F	H	+	+	+	1.	t	F	H	4	+	+	t	t	H	H	+	+	t	t	u	I MD	1
Δ		11	1	1	1	1	1	1	1	1	1	1	1	1	t	D	D		1	1	T	t	Þ	Þ		1	1	1	1	t	D		1	1	1	T	u	M	
1	F	4		1	1	0	1	4	1	4	1	10	4	F	F	F	A	A	1	+	F	F	P	A	P	4	1	F	F	F	P	P	1	1	F	F	U	1 4 2 0	NIC
L	7	1		4	4	-	4	4	4	4	4	-	4	+	+	+	H	H	4	+	+	-	F	H	H	4	4	+	+	+	H	H	4	1	+	t	-	V ITH	
			H	H	H	-	4	-	H	H	9	-	4	+	t	t	t	Ð	9	1	+	t	F	Þ	H	H	4	+	+	t	P	H	+	1	+	f	-	20	
	1		P	ø	d	24					4	E	4	1	F	F	F	P	4	1	F	F	F	P	P	9	1	T	F	F	P	P	1	1	F	F	1	101	H
		-		H	12	H	5	H	11	36	n	12	H.	-	F	-	34	×	=	8	-	1	N	11	5	¥.	=	=1		17	17	=	17	-	-	1	-	10	F
P		T	H	C	11	H	6	H	-	H	H	H	H	I	10	E	11	×	77	# 1	-	-	-	-	=	37	=	1	-	TH	22	=	H	-	- 2	1	=	LAB	ABS
A DESCRIPTION OF THE OWNER OF THE		18	Ó				4	1			A	4	A	< f \	< E .	- C	14	12		46	-16	-1A	10		10	1	- T.	a fil	1 1	12		-	1	10	-10 h			-	-

000	Farat
STANLEY STANLEY	College of Engineering & Technology for Women (Autonomous) Chapel Road, Abida, Hyderstrad 500001
Departme	ent of Computer Science and Engineering
B.E/CS	E/ VI Semester – Mini Project
Int	ernal Review-t
Student Name: K. Shayunni Fraposed Title: Hange S Name at the Gaide: D.K. Y. Y.	Rolly Bull No. 160520132022 Sharef toganography 160520132018 Takey
Date of review: 08/06/20	23
The program of the Mine Project - Suggestions 1 - 50 arXivy for 2 + march arXiv arXiv Suggestion to ject mine	a saturation of a second of the second of th
Therefore, it is recommended to	Submit/ Submit with minor revisional Cancel the project
Signature of the guide	Project Coordinator
1. aansa 2. <u>e</u>	

Mini project evaluation sheet

Class Assessment sheet

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

Department of Electrical and Electronics Engineering

2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

> Examination regulations of OU& Autonomous Batch

STANLEY *	STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (AUTONOMOUS) (Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade STLW/EB/Circular/2022-23/128
	Date: 04.07.2023
	B.E-Internal Examination- I Circular
1.	The I Internal Examinations for B.E- II Sem are being scheduled from $13^{th} - 15^{th}$ July, 2023.
2.	The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before 10 th July, 2023 before 03.30PM without fail.
3.	The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -
	Part-A - 5*2M =10M (All questions are compulsory) Part-B - 3*5M=15M (3 out of 4 have to be answered)
4.	Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
5.	The HODs are requested to verify the submission of all subject Question papers on time.
6.	The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before 10 th July, 2023 without fail.
(June Batyphardi-
Copy to	HOD's: Principal COE

Chapel Road, Abids, Hyderabad-500 001. Telangana, India. Ph:040-23234880 23244880 www.stanley.edu in

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (AUTONOMOUS) (Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

STLW/EB/Circular/2022-23/127

Date: 04.07.2023

<u>B.E II Semester- Internal Examination –I</u>

All the B.E II semester students are informed that, I - Internal examinations are scheduled from $13^{th} - 15^{th}$ July 2023. The detailed time table will be displayed on notice boards. Exams are conducted Offline and No Re-test will be conducted for the Absentee students.

IMPORTANT NOTE:

Students are strictly instructed to clear the college fee dues (if any) in order to get the Hall tickets for Mid-I examinations.

undil-COE Principal COE Copy to HOD' ademici brary Chapel Road, Abids, Hyderabad-500 001. Telangana, India. Ph:040-23234880, 23244880 DIA DIA

04.07.2023

B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSE, C	ME & AI&DS)	Group-B (EEI	E, ECE & IT)
Date / Time	10.00 - 11.30AM	02.00 - 03.30PM	10.00 - 11.30AM	02.00 - 03.30PM
13.07.2023	M -11	Environmental Science	М -П	EITK
14.07.2023	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition
15.07.2023	BEEC		Engg. Physics/ App. Physics	English

Note:

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

IT

ACOE

lil -Gat X

Principal/COE

Copy to HODs:

CSE

ECE

EEE

ADCE

04.07.2023

B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

	Group-A(CSE, C	ME & AI&DS)	Group-B (EEE	E, ECE & IT)
Date / Time	10.00 - 11.30AM	02.00 - 03.30PM	10.00 - 11.30AM	02.00 - 03.30PM
13.07.2023	M -II	Environmental Science	M -II	EITK
14.07.2023	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition
15.07.2023	BEEC		English 🖉	Engg. Physics/ App. Physics

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

اعل ACOE

Principal/COE

Copy to HODs:

CSE

EEE

ECE

.

IT

H&S

ADCE

AUTONOMOUS MID EXAM SCHEDULE A.Y:2022-23

		B.E -	III Sem	- I Inter	mal Exa	minatio	is for th	e A.Y-20	22-2023			
Date/	CSE -	III SEM	ECE -	III SEM	EEE -	III SEM	IT - I	II SEM	CME -	III SEM	ATTE	III CELL
· · · · · ·	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 -	02.00 -	09.30 -	02.00 -
27.10.22	M-III (P&S)	Dis.Maths	ME&A	PTSP	ECA	PTSP	P&S	Dis.Maths	M-III	Dis.Maths	M-III	Dis Mat
28.10.22	DE	OOPs using Java	EDC	EMTL	EMF	SSA	DBMS	OOPs using	DE	OOPs using Java	(P&S) DBMS	OOPs
29.10.22	co		DSD		AE	FCS	DELD	ET	Concepts in COMP	ET	Concepts in COMP	ET
	ACOE		Internal	Examinat Quiz(0	ion (IE) - Q) - FN-1(FN -09.30- 0.50-11.00/	10.45AM AM -/ AN	/ AN-01.30 02.50-3.00	- 02.45PM PM Cat Princip	To Ro al/COE	urd	

Mid Exam Time Tables A.Y-2022-23 OU

					a (enc) to	ine A.r.		12.05.22		
	CSE - V	III SEM	ECE - VII	ISEM	EEE - V	III SEM	IT - VI	ISEM		
Date / Time	09.30 - 10.30AM	11.30-12.30PM	09.30 - 10.30AM	11.30- 12.30PM	09.30 - 10.30AM	11.30- 12.30PM	09.30 -	11.30- 12.30PM		
18.05.22	Semantic Web & Social Networking	Road Safety Engineering	Satellite Communications (PE-III)	Wireless Sensor Networks (PE-IV)	Smart Grid Technology	Road Safety Engineering	Cryptography & Network Security	Road Safety Engineering		
19.05.22			Radar Systems(PE-V)	a.	Grid Integration of Renewable Energy Systems					
6	Te ably						Galyk Principal	Arali	Ll.	•
Convite Helbe										
copy to motos										
copy to Holos										

MID EXAM TIME TABLES A.Y-2022-23

OU

	CSE -	V SEM	ECE - V	SEM	EEE -	V SEM	IT - 1	VSEM	CME	V SEM	AIDS	VSEM
Date/Time	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 -	03.06 ·	10.00 -	03.00 -	10.00 -	03.00 -
23.01.23	ALC	PPL	MPMC	DSP	LCS	EMI	AT	05	ATACD.	04.001/11	ALC	S4.00PM
25.01.23	Al	SE	AC	ACS	5&5	PS-II	AI	SE	AL	SE	AL	SE
27.01.23	CN	DS	AWP	IAFM	LIC	RES	CN	OOAD	DAA	W&IT (PE-I)	DBMS	IOT (PE-I)
	CSE -	VII SEM	ECE - VI	ISEM	EEE - V	/II SEM	IT - V	I SEM	CME-V	II SEM		
Date/Time	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 -	03.00 - 04.00PM	ILOG -	03.00 -		
23.01.23	FIOT	DATA SCL	ES	VLSID	CED	SGP	FIOT	VLSI	ML	NLP		
24.01.23			MWT									
25.01.23	DIS. SYS.	15	SE(OE-III)	IAFM	PEAPS	SEM	cc	BDA	DIS. SYS. (PL-V)	BDA		
27.01.23			DS USING R (OE-II)	MCC (PE-II)	HVE	PQE			MCES (OK-II)	(12-14)		
ACGE								9-	allysifus. Ymredd Cag	nd -		

	B.E - 1	II, va	VII Gein	T CENT	FFF - I	II SEM	IT - 10	SEM	CME - I	II SEM	AIDS - III SEM	
Date / Time	CSE - 09.30 -	01.30 -	09.30 -	01.30 -	09.30 -	01.30 -	09.30 -	01.30 - 02.30PM	09.30 - 10.30AM	01_30 - 02_30PM	09.30 - 10.30AM	02.30PM
	10.30AM	02_30PM	10.30AM ED	DE	Engg.	M-III	ETC	F&A	DSA	OR	DSA	M-III
13.12.2021	UK	DL			Nicchanic	EME	MIII	BE	BE	Dis.M	BE	Dis.M
14.12.2021	DE	DSA	NT	ETC	ECA	EMP	DE	METT	DE	PL	DE	OOPS.
15.12.2021	Dis.M	OOPSJ	PTSP	F&A	EM-I	AL	DS					
16.12.2021	1						00.1				1 -	
			T PCP.	SEM	EEE -	EEE - V SEM IT - V SEM			CME -	VSEM	-	
Date / Time	09.30 -	01.30 -	09.30 -	01.30 -	09.30 -	01.30 - 02.30PM	09.30 - 10.30AM	01.30 - 02.30PM	09.30 - 10.30AM	01.30 - 02.30PM		
	10.30AM	02.30PM	10.30AM	DCD	EMI	PS-I	WAD	AI	SE	DAA		
13.12.2021	SE	OS	AC	DSP	LOS	MPMC	AT	CN	AT&CD	AI		
14.12.2021	ALC	AI	ACS	AWP	LCS	MINIC	CE.	OS	WIT	S&S	1	
15.12.2021	WIT	IRS	MPMC		S&S	RES(PE-I)	SE] 03			-	
CSE-1		II SEM	ECE-V	II SEM	EEE -	VII SEM	IT - V	II SEM	-			
Date / Time	09.30 -	01.30 -	09.30 - 10.30AM	01.30 - 02.30PM	09.30 - 10.30AM	01.30 - 02.30PM	09.30 - 10.30AM	01.30 - 02.30PM				
3.12.2021	IS	DS using R(OE-II)	ES	VLSID	CED	SGP	VLSID	HCI				
12.2021	Dis.Sys	FIOT	MWT	IAFM	PEAPS	SEM (PE-II)	FIOT	BDA	1			
	1000 C.A.		MCC/	DS using	DCS	PQ						
.12.2021			DSPA (OE- II)	R(OE-II)	(PE-III)	(PE-IV)		-	-			

Stanley College of Engineering & Technology for Women Chapel Road, Abids, Hyderabad

Date: 06.12.2021

Examination circular

All the B.E III, V & VII semester students are informed that, I - Internal examinations(CIE) are scheduled from $13^{th} - 16^{th}$ Dec, 2021. The detailed time table will be displayed on notice boards, the students are requested to note the same. CIE exams are conducted Offline and No Re-test will be conducted for the Absentee students.

Gaty & Frankl COE I/C of Exams Copy to HOD's:

CSE

ADCE

6. . ECE

IT

EEE

MBA

H&S
Stanley College of Engineering & Technology for Women Chapel Road, Abids, Hyderabad

Date: 06.12.2021

Examination circular

 The I Internal Examinations (Offline) for B.E- III, V & VII sem are being scheduled from 13th - 16th Dec, 2021.

 The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets in which either of them will be selected) through HOD/ exams coordinators to the Exam branch on or before 9th Dec, 2021 before 03.30PM without fail.

- The faculty is expected to follow the guidelines of University in setting the question paper.
- Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
- The HODs are requested to verify the submission of all subject Question papers on time.

6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before 9th Dec, 2021 without fail.

I/C Exams Copy to HOD's:		COE	Principal	
CSE ECE	EEE	п	MBA H&S	
ADCE				

No. 12/STLW/EB/2021

Date: 07.12.2021

To,

The Principal

Dear Sir,

It is hereby informed that the following members have been appointment as members of the Examination committee for the smooth conduct of Examination processes in the college for the academic year 2021-22.

SL No		Examination Committee	
1	Principal	Mr SatyaPrasad Lanka	Chairman
2	COE	Mr. S Narender Reddy	Convener
3	ACOE	Mr S Suman	Member
4	CSE	Mrs Sumayya Afreen	Member
5	FFE	Ms G Aishvaria	Member
6	FCE	Mrs Y Latha	Member
7	IT	Mr T Sandeep	Member
0	MBA	Mrs M Amala Kumari	Member
0	H&S	Ms Saba Fatima	Member
10	ADCE	Mrs Asma	Member

Thanking You.

el dele Controller of Examinations (S. Narender Reddy)

Chapel Road, Abids, Hyderabad-500 001.Telangana, India.Ph:040-23234880, 23244880 www.stanley.edu.in

Stanley College of Engineering & Technology for Women

Chapel Road, Abids, Hyderabad

B.E. VI Sem Consolidated Internal Marks List for the Academic Year 2022-2023

Subject: Microprocessors and Microcontrollers (MPMC) (PC423EE)

Date (Mid-I): 03 May 2023

Branch: EEE Date (Mid-II): 07 August 2023

S. No.	Roll Number	Name	Mid-I (20)	Mid-II (20)	Average	Assignment (5)	Quiz-I (5)	Quiz-II (5)	Best Quiz (5)	Total (30)
1	160620734002	Aditi Jaiswal	13	14	14	5	2	1.5	2	21
2	160620734003	Aishwarya Mulukala	17	16	17	5	3	2	3	25
3	160620734004	Akeefa Mahvish	16	18	17	5	3.5	3.5	4	26
4	160620734005	Akkaladevi Spandana	20	20	20	5	3.5	4	4	29
5	160620734006	Balam Maheshwari	16	18	17	5	3.5	3.5	4	26
6	160620734007	Boda Pravallika	9	14	12	5	3	2	3	20
7	160620734008	Badavath Priyanka	18	20	19	5	3	2	3	27
8	160620734009	Bunga Likitha	16	12	14	5	2.5	1.5	3	22
9	160620734010	Dabbeta Sathwika	15	17	16	5	2.5	2.5	3	24
10	160620734011	Dendi Saisree	15	20	18	5	3.5	. 4	4	27
11	160620734013	Kajjam Sanjana	13	19	16	5	2.5	3	3	24
12	160620734014	Karri Hari Naga Sree Lakshmi	20	19	20	5	1.5	3.5	4	29
13	160620734015	Kavvala Anusha	9	12	11	5	2.5	3	3	19
14	160620734016	Manda Sathvika	19	18	19	5	3	2.5	3	27
15	160620734017	Padala Swathi	16	14	15	3	3.5	2	4	22
16	160620734019	Ramavath Uma devi	18	17	18	5	2.5	3	3	26
17	160620734020	Saadiyah Tameem	14	17	16	5	3	2	3	24
18	160620734021	Sabavath Radhika	16	12	14	5	2.5	2.5	3	22
19	160620734022	Sadia Begum	20	17	19	5	4	3	4	28
20	160620734023	Sriramoju Pallavi	19	16	18	5	3.5	2.5	4	27
21	160620734024	Tejavath Shasi	18	9	14	5	1	2.5	3	22
22	160620734301	Mekala Manisha	8	11	10	3	0.5	1	1	14
23	160620734302	Suddala Akhila	20	20	20	5	3	4	4	29
24	160620734303	Sunnam Durga Sri	13	19	16	5	2.5	2.5	3	24
25	160620734304	D Ashritha	15	18	17	5	3.5	4	4	26
26	160620734305	Kotte Sai Manogna	18	15	. 17	5	2.5	4.5	5	27
27	160620734306	Panja Yamini	20	20	20	5	3	4	4	29
28	160620734307	Budde Alekhya	15	17	16	5	3	4	4	25
29	160620734308	Yamagani Niharika	20	20	20	5	4	4.5	5	30
30	160620734310	Oruganti Nandhini	14	17	16	5	4	4.5	5	26

31	160620734311	K Roopa Joshna	6	8	7	5	2.5	4	4	16
				Mid-I			1	Mid-II		
Total I	No. of Students:			31				31		
No. of	Students Present:			31				31		
No. of	Students Absent:			0				0		
Facult	y Name/Date:		Dr. N	agasekhara I	eddy N		Dr. Naga	sekhara Red	ldy N	
Facult	y Signature/Date:		Fe	hey.vd	5523		put.r	100	823	
HODS	Signature/Date:		2	elity of	6523		Till . A	12/0	8/3	

HEAD Departmäni bi Electrical & Electrones Engineering Stantey College of Engg, & Tech. for Women Chapel Road, Abids, Hyderabad.

HEAD Beartment of Electrical & Electronics Engineering StepHay College of Engg. & Tech. for Women Del Road, Abids, Hyderabad

B.E.	- AICTE VI Sem - 734 -	EEE - 1606 - Stanley College of Hyde	Engineerii erabad	ng & Tecl	nnology f	or Won	nen ,Ch	apel R	oad, A	bids ,
601C - 620 - S	DIGITAL SIGNAL PROCE.AND APP WITCHGEAR AND PROTECTION	PL. 603T - FINANCE AND ACCOUNTING 645 - DIGITAL SIGNAL PROCESSING LA	603X - HI B 654 - MIC	GH VOLTAGE RO.PROC.&M	E ENGINEERIN	G 615 - B 670 -	MICRO.F	ROC.&MI NG JAVA	CROCONT	ROLLERS
SNO	нтно	Name	601C	603T	603X	615	620	645	654	670
1	160620734002	ADITI JAISWAL	17	24	18	21	22	24	19	24
2	160620734003	AISHWARYA S MULUKALA	17	24	20	25	21	24	19	19
3 .	160620734004	AKEEFA MAHVISH	18	23	22	26	22	24	19	23
4	160620734005	AKKALADEVI SPANDANA	27	26	27	29	23	24	25	22
5	160620734006	BALAM MAHESHWARI	20	23	19	26	17	23	19	22
6	160620734007	BODA PRAVALLIKA	17	22	24	20	19	24	19	18
7	160620734008	BADAVATH PRIYANKA	28	28	25	27	23	24	22	26
8	160620734009	BUNGA LIKITHA	17	27	21	22	22	23	20	19
0	160620734010	DABBETA SATHWIKA	23	28	21	24	19	24	20	22
10	160620734011	DENDI SAISREE	25	25	26	27	25	24	25	23
10	160620734013	KAJJAM SANJANA	25	28	23	24	23	24	25	124
12	160620734014	KARRI HARI NAGA SREE LAKSHMI	27	26	22	29	26	24	25	26
12	1/0/2022/015	KAVVALA ANUSHA	22	22	16	19	17	24	22	119
13	160620734015	MANDA SATHVIKA	23	27	22	27	19	24	22	19
14	160620734018	PADALA SWATHI	25	27	22	22	24	22	20	24
15	160620734017	RAMAVATH UMA DEVI	23	22	23	26	26	23	22	24
16	160620734019	SAADIVAH TAMEEM	16	24	24	24	17	24	19	21
17	160620734020	SARDITATI RADHIKA	20	19	23	22	23	23	22	24
18	160620734021	SADAVAILI MASHIEL	28	30	27	28	27	24	22	24
19	160620734022	SADIA BEGOM	25	27	21	27	19	24	22	20
20	160620734023	SKIRAMOJO IALLINI	L. Martine C. Martine	■ 1923	Dep and Stanle	ment of Ele ny College	HEAD of Engg. & Abids. H	Tech. for	Wor"	inf.

0

0

 \geqslant

20

Page No :2

EEE

B.E. - AICTE VI Sem - 734 - EEE - 1606 - Stanley College of Engineering & Technology for Women ,Chapel Road, Abids , Hvderabad 26-08-2023 11:26:54

0

		пу	uerabau							
SNO	HTNO	Name	601C	603T	603X	615	620	645	654	670
21	160620734024	TELANATIN OT LAT		New York Contractor & Contractor		_				010
2	160620734201	TEJAVATH SHASI	20	25	21	22	22	23	19	21
12	100020734301	MEKALA MANISHA	17	21	20	14	22	23	19	18
2.5	160620/34302	SUDDALA AKHILA	28	30	26	29	27	24	24	26
24	160620734303	SUNNAM DURGA SRI	27	26	22	124	24	22	22	10
25	160620734304	DASHRITHA	25	25	26	24	24	23	23	10
26	160620734305	KOTTE SAI MANOGNA	28	25	20	20	25	25	23	20
27	160620734306	PANJA YAMINI	25	29	25	29	26	25	22	21
28	160620734307	BUDDE ALEKHYA	26	29	28	25	26	24	24	23
29	160620734308	YAMAGANI NIHARIKA	28	27	29	30	27	25	25	24
30	160620734310	ORUGANTI NANDHINI	27	20	22	26	24	25	22	20
31	160620734311	K ROOPA JOSHNA	16	18	19	16	20	24	19	19
	and a second sec		Print						_1	

Feddy mf. (HOD EEE)

HEAD Department of Electrical & Electronics Engineering Blankey College of Engg. & Tech. for Women Chapel Road, Abids, Hyderabad.

	S Pe Income		a huger	FINA						Ē
	Course :	B.E		Brand	h : EEE		Sem	: IV SEM		
S.No.	Hall Ticket No.	ETC	EM-I	CS	STLD	OOPJ	EM-IL	CSL	STLD L	Total
1	160621734001	36	36	33	26	36	39	26	35	267
2	160621734002	29	21	18	16	25	20	23	34	186
3	160621734003	30	30	28	21 .	28	26	30	34	227
4	160621734004	35	28	28	22	32	30	27	27	229
5	160621734005	35	32	37	27	39	38	33	34	275
6	160621734006	36	. 36	36 .	22	36	38	35	35	274
7	160621734007	34	27	22	16	28	27	30	32	216
8	160621734008	37	37	38	28	40	39	38	38	295
9	160621734301	37	37	40	38	39	39	39	39	308
10	160621734302	36	37	37	29	37	38	30	35	279

Veribiel HEAD Department of Electrical & Electronics Engineering, Stanley College of Engg. & Tech. for Womer Chapel Road, Abids, Hyderabad.

U

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN, ABIDS DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

S No.	Roll No.	Name of the Student	ETC	EM 1	cs	STLD	OOP using JAVA	EM-1 lab	CS lab	STLD lab
			Total (40)	Total (40)	Total (40)	Total (40)	Total (40)	Total (40)	Total (40)	Total (40)
1	160621734001	B. GREESHMA	36	36	33	26	36	39	26	(45)25
2	160621734002	FEMINA PARVEEN	29	21	18	16	25	20	23	34
3	160621734003	K. SREEVANI	30	30	28	21	28	26	30	34
4	160621734004	KAUREEN SULTANA	35	28	28	22	32	30	27	27
5	160621734005	MARIAM FATIMA	35	32	37	27	39	38	33	34
6	160621734006	N.KAVERI	36	36	36	22	36	38	35	35
7	160621734007	S.CHANDANA	34	28	22	16	28	27	30	32
8	160621734008	U. VAISHNAVI	37	37	38	28	40	39	38	38
9	160521734301	J. RAJESHWARI	37	36	40	38	39	39	39	30
10	160621734302	KOTHA MAHESHWARI	36	36	36	29	37	38	30	35
11	160621734303	DONTHA TEJASWI	34	37	34	29	39	34	34	37
12	160621734304	THANTAM VIDYA	36	36	35	33	38	37	33	38
13	160621734305	RUMANA FAROOQUI	34	36	36	27	38	29	30	37
14	160621734306	G SUSHMITHA	36	33	30	27	36	31	30	36
15	160621734307	JEETHAM KEERTHI	34	36	29	24	37	30	28	37
16	160621734308	JAKKULA SWATHI YADAV	33	37	34	28	34	39	28	36
17	160621734309	GOLLA KOTI HARITHA	33	37	37	31	36	33	32	37
18	160621734310	ERLA SWATHI	34	37	33	27	35	30	31	36
9	160621734311	CHALMANI RAKSHITHA	29	34	29	24	37	. 29	29	36
20	160621734312	GODUGU GOWTHAMI	35	37	37	31	38	39	30	37
		Faculty	Dr. V. Srilatha	B Pallavi	B Vijayalaxmi	Namratha S	Sumayya Afreen	B Pallavi	B Vijayalaxm	i Namratha S

B.E IV SEM AWARD LIST 2022-2023

HOD Felly . My.

0

Class Assessment Sheet

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN An UGC Autonomous Institution, Approved by AICTE, Accredited by NBA and NAAC with 'A' Grade Chapel Road, Abids, Hyderabad, Telangana, India

DEPARTMENT OF ELECTRICAL AND ELECTRONICSENGINEERING

EM-I Class Assessment Report

IV SEM (2022-23)

S.no	Roll no.	Name	Activity	Marks
1	160621734001	B. GREESHMA	GATE Ques. Quiz	2
2	160621734002	FEMINA PARVEEN	GATE Ques. Quiz	2
3	160621734003	K. SREEVANI	GATE Ques. Quiz	2
4	160621734004	KAUREEN SULTANA	GATE Ques. Quiz	2
5	160621734005	MARIAM FATIMA	GATE Ques. Quiz	2
6	160621734006	N.KAVERI	GATE Ques. Quiz	3
7	160621734007	S.CHANDANA	GATE Ques. Quiz	2
8	160621734008	U. VAISHNAVI	GATE Ques. Quiz	3
9	160621734301	J. RAJESHWARI	GATE Ques. Quiz	2
10	160621734302	KOTHA MAHESHWARI	GATE Ques. Quiz	2
11	160621734303	DONTHA TEJASWI	GATE Ques. Quiz	3
12	160621734304	THANTAM VIDYA	GATE Ques. Quiz	2
13	160621734305	RUMANA FAROOQUI	GATE Ques. Quiz	3
14	160621734306	G SUSHMITHA	GATE Ques. Quiz	3
15	160621734307	JEETHAM KEERTHI	GATE Ques. Quiz	3
16	160621734308	JAKKULA SWATHI YADAV	GATE Ques. Quiz	3
17	160621734309	GOLLA KOTI HARITHA	GATE Ques. Quiz	3
18	160621734310	ERLA SWATHI	GATE Ques. Quiz	3
19	160621734311	CHALMANI RAKSHITHA	GATE Ques. Quiz	2
20	160621734312	GODUGU GOWTHAMI	GATE Ques. Quiz	3

Fallavi

Subject Faculty

Telley of

HEAD Department of Electrical & Electronics Engineerin Stanley College of Engg. & Tech. for Wome Chapol Road, Abids, Hyderabad, A.P.

HOD EEE

				A	cadem	ic Yea	r_a	022-	23				SE	м	T	_	_ s	EC_	Ą		2				
S.No.	Dates Exp. No.	&7 It	01 20) Week 1	3	Da	3 02 / 2 Week 2	013	101	02 101 Week 3	3	171	02 24 Week 4	023	a	102 1 Week 5	1023	0	1 03	8083	10 0	Week 7	13		Week 8	
	Exp. Name	Jobody	(chonti	plab	Mann	uel w	iting	Manry	alun	Hrg	Ezphio	1 8	PNOZ	FUTNO	A En	PA102	ENDALD	5 6	up 4	6.03	6.	p4	Esper	iment	Nos
	Roll No.	Rec 1	Exe	Viva	Rec	Exe	Vise	Rec	Exe	Vilva	Rec	Exe	Viva	Rec	Exe	Viva	Rec	Exe	Viva	Rec	Exe	'Viva'	Red	Exe	Viva
1	160621 804	5::	4	3.	3	4	5	4	5	4	5	H	4	3	5	4	A	A	A)	3	4	3	4	н	5
2	160621 002	3.	3	3	(A-	A	A	3	4	3	5	3	4	4	3	2	4	3	2	A	A	A	A	A	A
3	160621734	A	A	A	5	H	5	5	H	5	4	5	4	40	5	4	H	3	4	A	A	A	Æ	A	A
4	160621734	5	H	5	4	4	5	4	5	5	5	H	4	Le	3	4	4	H	4	4	4	5	4	H	4
5	160621734	5	5	H	A	A	A	4	3	H	5	5	4	H	4	5	5	A	5	A	A	AD	H	5	H
6	160621734	A	A	A	5	H	5	A	A	A	5	5	H	N	3	4	H	H	5	4	3	4	A	A	A
7	160621734	6	H	5	A	A	A	A	A	A	A	A	A	3	H	3	A	A	A	A	A	A	A	A	A
8	160621734	5	4	5	4	H	5	5	H	5	5	4	5	5	4	5	5	5	4	5	H	5	5	4	5
9	16001734	5	h	5	1.	He	5	1	5	H	5	5	5	In	A	A	A	A	A	5	H	5	5	5	H
10	160621734	H	5	4	L	2	5	5	11	5	A	A	A	1	H	5	5	4	5	H	4	5	4	L	5
11	160621734	1	5	L	2	5	4	1.	1	5	L.	5	2	2	L	I.	5	H	5	L	3	H	A	A	A
12	160621734	L L	14	14	5	6	L	5	1	4	17	5	5	5	4	4	5	5	4	A	A	A	4	5	4
13	16061134	5	H	5		5	1	1.	1.	E	5	L	5	5	L	5	5	4	5	5	4	5	1	5	h
14	160621134		5	1	4	5	05	1	A	5	5	7.	4	L	3	4	L	A	10	A	A	A	A	A	A
15	1606-21-13	H	1	R	.1.	0	1	1.	4	5	C	1	H	3	H	1.7	The second	1	10	1.	1.	2	A	A	A
16	60621-1-4	0	-	2	17	2 5	7	CA	A	0	5	Le	5	10	H	12	4	T	7	A	1	5		0	A
17	160621134	P-	H	A	7	1.	5	T	A	A	A	A	D	17	H	3	3	10	12	4	7	5	1.	2	1.
18	160621734	H	IT.	- N	5	4	F	5	4	C	5	5	4	1	11	1.	L	1 L	12	1	H	5	7	L	2
10	160621734	0	4	5	0	A	0	h	H	5	4	h	4	11	3	17.	4	H	14	A	17	2	A	0	A
20	160621724	D F	4	E	L	5	5	E	5	4	3	L	H	1	3	E	1.	H	1 P	- 7	1	5	1.	5	4
20	3120	5	M	3	7	0	-	1	-	1.	1	11	17	1	-	-	17	10	- 2	1.2	M	1	A	10	
21		-		-	-	10.10	-	-	-	-	-		+	-	-	-	-		-	-		+		+	+
22				-			-		-				-		-			-		-		-	+	+	-
23					-	-	-	-	-	-			+	1	_	-	-		-	-	-		+	+-	+
24				-		-1.11					-		17	4.1	1		-		-	-				+	
25	TO2			1					NBS .		4	Rox	1	1	w/			(NG	-	The	2	1	1	NE	

Stanely College of Engineering & Technology for Women Weekly Evaluation Sheet

SMART BRAINY INVOICE

Nus	& TECHNOLOGY FOR V (Approved by AR TE & All Accredited by NBA-DG (CSF, FCF)	VOMEN iliated to Osr , F.F. & IT)	AUT Ania Univ & NAAC	ONOMO crsity) with 'A' Grade
Lr. N	4o. STLW/Exam Br./Software/2021/2		Date: 15	12-2021
	Purchase Order	é .		
То				
M/S	Smart Brainy Techno Solutions,			
Hais	Road No.4, Sri Sai Raghavendra Homes,			
Hyde	erabad-501510			
	and the			
Sir,				
	Sub.: STLW - Purchase Order for the required	Equipment	s for Exam	ination
	software " Smart Brainy Examination Ref.: Your Quotation No. SB/SCETW/07/2020	Managemen 0-2021, dates	t System" 5 05/10/20	(SBEM5) - Reg. 121.
Equi	In discussions with you. I am herewith place	d the Purcha	se Order f	or the required
Syst	em" (SBEMS) as given below	iny Examinat	ion Mana	gement
S.No	Product	Unit Price	Qty	Amount
-	Fujitsu fi-7160 Scanner			
	(8oth Normal and Digital Valuation System)	60,000/-	1	60,000-00
1	A4 ADF Colour (Duplex scanner) 60ppm/120ipm, 100 sheet ADF, daily duty cycle: 6,000 pages			
2	A4 ADC Colour (Duples scanner) 60ppm/120pm, 100 Sheet ADF, daily duty cycle: 6,000 pages Digital Paper Cutter Max.Cutting width: 450et50 mm Min.Cutting height: 40 mm Min.Cutting depth: 50 mm Cump cancer: Judio Pub Paper: Anto	60,000/-	1	60,000-00
2	A4 ADC Colour (Duples scanner) 60ppm/120pm, 100 Sheet ADF, daily duty cycle: 6,000 pages Digital Paper Cutter Max.Cutting width: 450x450 mm Min.Cutting depth: 50mm Min.Cutting depth: 50mm Clamp paper : Auto, Push Paper : Auto	60,000/- GST	1	60,000-00
1 2 3	A4 ADC Colour (Duples scanner) 60ppm/120pm, 100 Sheet ADF, addy duty cycles, 6,000 pages Digital Paper Cutter Max Cutting height: 40 mm Min.Cutting depth: 50mm Clamp paper : Auto, Push Paper : Auto Sewing & Stitching Machine (Industrial IEre CMM Bookine	60,000/- GST 30,500/-	1 @ 18%	60,000-00 21,600-00 10,500-00
2	A4 ADP Colour (Duples scanner) 60ppm/120ppm, 100 Sheet ADP, 400 bits, 6000 pages Digital Paper Cutter Max.Cutting width: 450450 mm Max.Cutting height: 40 mm Min.Cutting depth: 50mm Clamp paper : Auto, Push Paper : Auto Serving & Stitching Machine (Industrial) For OMR Booklet Stitching.	60,000/- GST 10,500/- GST	1 @ 13% 1 @ 12%	60,000 00 21,600 00 10,500 00 1,360 00
2	A4 ADP Colour (Duples scanner) 60ppn/120ppn, 100 Intert A07, 430 pdtry type (5,000 pages) Digital Paper Cutter Max.Cutting width: 450 etc. Max.Cutting height: 40 mm Min.Cutting depth: 50mm Clamp paper : Auto, Push Paper : Auto Sewing & Stitching Machine (Industrial) For OMR Booklet Stitching.	60,000/- GST 10,500/- GST Gra	1 @ 15% 1 @ 12% nd Total	60,000 00 21,600 00 10,500 00 1,350 00 1,53,360-0
2	A4 ADP Colour (Duples scanner) 60ppm/120pm, 100 Sheet ADP, adaly duty cycles (5,000 pages) Digital Paper Cutter Max Cutting width: 450 kms Max Cutting height: 40 mm Min Cutting depth: 50 mm Clamp paper : Auto, Push Paper : Auto Sewing & Stitching Machine (Industrial) For OMM Booklet Stitching.	60,000/- GST 10,500/- GST Gra	1 @ 15% 1 @ 12% nd Total	60,000 00 21,600 00 10,500 00 1,360 00 1,53,360-0
2	A4 ADP Colour (Duples scanner) 60ppm/120ppm, 100 Sheet AD ² , adaly dury cycles (5,000 pages) Digital Paper Cutter Max Cutting width: 450 storm Min.Cutting height: 40 mm Min.Cutting depth : Somm Cump paper : Auto, Push Paper : Auto Sewing & Stitching Machine (Industrial) For OMR Booklet Stitching. (One Lakh Fifty Three Thousand Th	60,000/- GST 10,500/- GST Gra	1 @ 18% 1 (@ 12% nd Total Sixty Only)	60,000-00 21,600-00 10,500-00 1,550-0 1,53,360-0
1 2 3	A4 ADP Colour (Duples scanner) 60ppm/120pm, 100 Intert A07, 410h duty reprint, 600 pages Digital Paper Cutter Max.Cutting width: 450 mm Max.Cutting height: 40 mm Min.Cutting depth: 50 mm Clamp paper : Auto, Push Paper : Auto Serving & Stitching Machine (Industrial) For OMR Booklet Stitching. (One Lakh Fifty Three Thousand The \$ & Conditions:	60,000/- GST 10,500/- GST Gra ree Hundred	1 @ 15% 1 @ 12% nd Tatal Sixty Only)	60,000 00 21,600 00 10,500 00 1,260 00 1,53,360 0

Chapel Road, Abids, Hyderabad - 500 001. Telangana State, India Ph.: 040.23234880, 23244880, www.stanley.edu.m

	and a construction of the	INVOICE - Origina
Smart Brainy Techno Solutions	INVOICE NO.	DATE
#101,Sri Lakshmi Nilayam Apts.,	SB48	11-01-2022
Near YSR Bridge, Kakinada,	PURCHASE ORDER NO.	PODATE
East Godavari Dist. Andhra Pradesh - 533003	STLW/Exam Br./Software/2021/2	15-12-2021
9642099919	GSTIN	PAN
PILL TO:	37ADIFS4086K1ZG	ADIFS4086K
Stanley College of Engg.& Lechnology For Wome Abids, Hyderabad.	n(A)	
DESCRIPTIO		AMOUNT
Fujitsu fi-7160 Scanner		60,000.00
Digital Paper Cutter	CT0184	60,000.00
	0316-18/8	22,000
a second and a second second		10,500.00
Sewing & Stitching Machine	GST@12%	1,260.00
a de la companya de l	1.//	
Remarks / Instructions:	b	
Remarks / Instructions:	GRAND TOTAL	1,53,360.0

1		B.E	- VI Sem	- I Intern	nal Exam	inations (C	TE) for th	e A.Y-202	2-23		25.0	4.23
	CSE -	VI SEM	ECE -	VI SEM	EEE -	VI SEM	IT-V	I SEM	CME -	VISEM	AIDS -	VISEM
Date/Time	10.00 - 11.00AM	02.00 - 03.00PM										
03.05.23	ML.	DM	DC	VLSID	F&A	МРМС	ML	Dis. Mitigation	CN	ют	ML	WS (PE-III)
04.05.23	C&NS	DAA	DCCN	DI&VP (PE-I)	DSP&A	SGP	NS&C	DAA	Data Science	DW&DM (PE-II)	сс	DV (РЕ-П)
05.05.23	СВ	SS&IS	IOTSD (PE-II)	DBS (OE-I)	HVE	OOP using Java	SQAT	ES	НСІ (РЕ-Ш)	SS&IS (OE-I)	BDA	SS&15

Stanley College of Engineering and Technology for Women

ACOE

lal Principal

ENGINEERING & TECHNOLOGY FOR WOMEN Non-minonity Autonomous Institution) ourses are accredited by NBA & MAAC with 'A' grade) nia University and Approved by AICTE (All eligible UG e

Date:13.10.2022

B.E - III Sem - I Internal Examinations for the A.Y-2022-2023

	CSE -	III SEM	ECE - I	II SEM	EEE - I	II SEM	IT - 11	II SEM	CME - I	II SEM	AIDS - I	II SEM
Date/ Time	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM						
27.10.22	M-III (R&S)	Dis.Maths	ME&A	PTSP	ECA	PTSP	P&S	Dis.Maths	M-III (P&S)	Dis.Maths	M-III (P&S)	Dis.Maths
28.10.22	DE	OOPs using Java	EDC	EMTL	EMF	SSA	DBMS	OOPs using	DE	OOPs using Java	DBMS	OOPs using Java
29.10.22	со		DSD		AE	FCS	DELD	ET	Concepts in COMP	ET	Concepts in COMP	ET

Internal Examination (IE) - FN -09.30-10.45AM / AN-01.30 - 02.45PM Quiz(Q) - FN-10.50-11.00AM -/ AN-02.50-3.00PM

Jatyphardil.

Principal/COE

ACOE

	TTTT
STANLEY	STANLEI
NIGHT,	COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN
Estd.2008	(Private Un-eided Non-minority Autonomous Institution) (All eligible UG courses are scredited by NBA & NAAC with 'A' grade) Affiliated to Osmania University and Approved by AICTE
	Date:23.03.23
D	E IV Som Unternal Examinations for the A.Y-2022-2023

T	CEF I	VSEM	FCF .I	VSEM	EEE - I	V SEM	IT - IV	SEM	CME -	IV SEM	AIDS -	IV SEM
Date/ Time	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM
01.04.23	AI	ALC	AEC	S&S	OOP USING JAVA	EM-I	ТА	FDIP	DAA	ALC	AI & R	DE
03.04.23	ETCS	ET	AWP	-	ETC	-	-	TS&S	-	ETC	-	DS
04.04.23	OS	DBMS	ICA	СОА	CS	STLD	OS	COMP	OS	DBMS	OS	CN

Internal Examination (IE) - FN -09.30-10.45AM / AN-02.00 - 03.15PM Quiz(Q) - FN-10.50-11.00AM -/ AN-03.20-3.30PM

J. TUS

Stanley College of Engineering and Technology for Women

B.E - V & VII Sem - II Internal Examinations (CIE) for the A.Y-2022-23

18.01.23

	CSE -	V SEM	ECE - V	SEM	EEE -	V SEM	IT - V	SEM	CME -	V SEM	AIDS -	V SEM
Date/Time	10.00 - 11.00AM	03.00 - 04.00PM										
23.01.23	ALC	PPL	MPMC	DSP	LCS	EMI	AT	OS	AT&CD	OS	ALC	FCT
25.01.23	AI	SE	AC	ACS	S&S	PS-II	AI	SE	AI	SE	Al	SE
27.01.23	CN	DS	AWP	IAFM	LIC	RES	CN	OOAD	DAA	W&IT (PE-I)	DBMS	IOT (PE-I)

	CSE -	VII SEM	ECE - VI	SEM	EEE - V	II SEM	IT - V	II SEM	CME - V	II SEM
Date/Time	10.00 -	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM	10.00 - 11.00AM	03.00 - 04.00PM
23.01.23	FIOT	DATA SCI.	ES	VLSID	CED	SGP	FIOT	VLSI	ML	NLP
24.01.23			MWT						DIS SVS	BDA
25.01.23	DIS. SYS.	15	SE(OE-III)	IAFM	PEAPS	SEM	CC	BDA	(PE-V)	(PE-IV
27.01.23			DS USING R (OE-II)	MCC (PE-II)	HVE	PQE			NCES (OE-II)	

ACOE

Firefox

https://osmaniaer_m/Internals/OUSM_SITS/EAF/College/InternalMarksReport.aspx?RollI.

OSMANIA UNIVERSITY HYDERABAD, (TS)

S

16-02-2023 17:11:54 Page No :1

B.E. - AICTE V Sem - 737 - I.T - 1606 - Stanley College of Engineering & Technology for Women ,Chapel Road, Abids , Hyderabad

			à dei anau								
501S - 1	WEB-APPLICATION DEVELOP.LAB	5020 - ARTIFICIAL INTELLIGENC	ELAB 5031	- OBJECT	ORI.ANA.A	ND DESIG	GN 5	10 - 61	ERATING	SYSTEM	S
535 - S(585 - Al	DFTWARE ENGINEERING RTIFICIAL INTELLIGENCE	537 - AUTOMATA THEORY	538	- COMPU	TER NETWO	RKS	în	73 - CC	OM.NETW	ORKS&0	SLAB
SNO	ONTH	Name	501S	5020	5031	519	535	537	538	573	585
1	160620737001	ADDANKI LAKSHMI PRAVALLIKA	25	23	24	27	18	21	27	23	18
2	160620737002	AEDLA AMULYA	25	24	26	29	20	14	27	24	15
3	160620737003	AVULA SHRAVANI	20	20	22	14	13	12	12	20	16
4	160620737004	BORRA THIRUMALA	25	24	28	27	27	27	29	24	26
5	160620737005	BUSA NIKHITHA	22	24	28	27	22	17	29	24	27
9	160620737006	CHITYALA DEEPIKA	25	24	28	27	27	26	30	24	27
7	160620737007	DODDA SRILEKHA	22	25	27	24	20	17	23	25	23
8	160620737008	GIDDI SIRISHA	18	21	21	24	16	13	17	21	16
9	160620737009	HABEEBA RUHI	25	24	23	24	19	19	27	24	19
10	160620737010	VISHALA JAGITHOLLA	25	25	30	29	28	28	30	25	30
11	160620737011	JANAGANI ABHIGNA	23	24	26	27	18	19	28	24	20
12	160620737012	JYOTHIKA KAVYA TIRUPATHI	25	24	28	30	21	23	30	24	25
13	160620737013	KALLA SUSHMA	23	23	26	26	20	22	29	23	17
14	160620737014	KATA SRIJA RANI	25	25	30	30	30	30	30	25	30
15	160620737015	KATARI SREEDEEPTHI	25	24	27	29	29	29	29	24	28
16	160620737016	KEELUKATHI GEETHA MADHURI	25	22	24	24	16	16	26	22	20
17	160620737017	KONA JONETHA MARGHARTT	24	22	24	26	14	13	25	22	20
18	160620737019	MEHNOOR BEGUM	25	24	27	28	27	27	29	24	28

16-Feb-23, 4:57 PN

https://osmaniaer___om/Internals/OUSM_SITS/EAF/College/InternalMarksReport.aspx?Rol

Page No	200								ERSITY	OSMANIA UNIV
20	20	25	16	18	23	26	20	18	MOHAMMED SADHAFREEN	160620737021
23	20	15	13	14	19	24	20	18	METHUKU SRAVANI	37020

•

B.E. - AICTE V Sem - 737 - I.T - 1606 - Stanley College of Engineering & Technology for Women ,Chapel Road, Abids , Hyderabad HYDERABAD,(TS)

43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	SNO
160620737044	160620737043	160620737042	160620737041	160620737040	160620737039	160620737038	160620737037	160620737036	160620737035	160620737034	160620737033	160620737032	160620737031	160620737030	160620737029	160620737028	160620737027	160620737026	160620737025	160620737024	160620737023	160620737022	HTNO
VIMUDHA MAHESEKAR	THANUKU AKSHAYA	SYEDA SIDRA FATIMA	SYEDA LUBNA	SUTHARI SAI SUDHA	SUCHITHA KAMARAPU	SOMA ANISHA	ZUBIA MUQTADIR	RUBEENA FIRDOSE	RABIA FATIMA	POGULA VAISHNAVI	PENNADA VARSHINI	PADURI NEHA	NUTHULA ANITHA	NOONAVATH PRAVEENA	NIRADI PREETHI	NALLULA SHRUTHI GOUD	NALLA KAVYA	NAGULAPALLY NIKILA	MYAKALA SHREYA	MUNIGALA VAISHNAVI	MUMMAI GREESHMA	MOTHAGARI SRINIDHI	Name
25	24	25	25	20	24	22	22	22	19	22	18	25	25	22	22	25	25	25	25	25	25	25	501S
25	24	25	25	21	24	24	22	21	23	24	20	25	25	21	24	24	25	24	23	25	25	24	5020
27	27	28	25	24	29	27	22	19	30	25	21	30	30	22	27	29	29	25	27	30	28	27	5031
26	29	29	26	21	29	27	27	27	27	27	28	30	30	25	27	28	28	25	27	29	30	26	519
23	20	28	21	13	26	22	18	12	22	17	12	27	29	22	21	24	28	24	28	29	29	16	535
25	20	28	22	12	27	22	22	15	19	14	15	22	29	23	20	24	28	13	27	29	29	19	537
29	28	30	28	21	29	26	29	22	29	27	22	29	29	21	27	29	30	27	28	29	30	27	538
23	25	25	25	20	25	25	23	22	23	23	21	25	25	22	23	25	25	24	25	25	25	24	573
24	22	27	19	12	23	22	22	14	20	16	21	27	29	17	22	27	29	21	23	28	29	26	585

2 of 4

10-1-00-23, 4.31 FIV

16-Feb-23, 4:57

 $https://osmaniaer_mm/Internals/OUSM_SITS/EAF/College/InternalMarksReport.aspx?RollI.$

COCONTRACTOR OF A REALTING A REALTING AND				TALANA SA BASEBANA SA	Constrained and a second second	and a survey of the second		and the second s	states and a second s		0407070707040
VELTI RICHA REDUY 20 20 20 20 20 20 20 20 20 20 20 20 20	16	25	26	23	14	25	29	23	23	AKTIT A AKANKSHA	AVULELUCAUA
		10		UC	UC	UC	UC	C7	c7.	YELTI RICHA REDDY	

HYDERABAD,(TS) **OSMANIA UNIVERSITY**

16-02-2023 17:11:54

(C) B.E. - AICTE V Sem - 737 - I.T - 1606 - Stanley College of Engineering & Technology for Women , Chapel Road, Abids , Hyderabad

5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	SNO	
160620737068	160620737067	160620737066	160620737065	160620737064	160620737063	160620737062	160620737061	160620737060	160620737059	160620737058	160620737057	160620737056	160620737055	160620737054	160620737053	160620737052	160620737051	160620737050	160620737049	160620737048	160620737047	HTNO	
NANDGOWDI SAAKSHI	M VANSHITA SINGH	M VAISHNAVI	LAXMIGARI DISHA RECHAL	KUNTALA KAVYA	KUNCHA DEEKSHITHA	KONDURU TEJASWI	KONDAGONI NAMITHASRI	KANTAYAPALEM SMRITI	JONNAPALLY SUDHAKAR SHANTHI KIRAN	JANGINTI RISHITHA	GUDUR SAHITI	GINAKALA KUSUMA	FOUZIA MUJEEBUDDIN	EGAM NISHNA	CHOUGANI THRISHA	CHINTHALA AKSHITHA	BOJJA MANVITHA SEN	BATOOL SADIA	BANALA GREESHMA	ARUTLA SAI SNEHA	AKULA SRIJA	Name	
23	24	25	20	20	23	24	24	15	24	23	24	20	20	24	24	20	23	15	20	23	21	501S	and a second second second and a second se
25	25	25	20	20	20	25	24	15	21	25	25	18	19	23	23	25	18	15	18	21	24	5020	and the second
25	25	30	26	23	22	29	28	17	26	29	27	20	25	28	29	29	23	17	24	26	26	5031	
28	24	27	21	25	22	28	29	18	26	30	28	25	27	30	29	29	27	20	23	29	27	519	
19	24	29	16	15	15	27	28	12	26	28	28	18	19	87.	27	24	16	12	17	20	16	535	
25	24	29	13	15	12	28	28	12	26	28	28	22	20	C7	21	27	20	12	20	24	16	537	
27	24	30	24	18	19	30	30	14	26	29	27	26	24	67	30	87	21	18	24	28	22	538	- Contraction of the second se
22	25	52	10	10	17	225	21	12	22	52	22	19	I.J.	24	22	24	81	12	18	21	24	573	
14	24	67	11	17	12	30	28	12	26	87	24	14	CI	10	07	24	15	12	12	12	15	585	***

16-Feb-23, 4:57 PN

16-Feb-23, 4:57 PN

-
H
F
S
2
S
8
2
H
Ξ.
2
2
-
~
H
P
-
n
5
H
a
50
2
0
C
TO.
-
\leq
'CO
H
H
S
>
[I]
-
-
$\mathbf{\Omega}$
0
2
UQ
2
F
H
C
=
2
1
7
-
H
X
50
7
0
P
2
A
è
S
P
×
-2
R
0
I
-

E E E	70 16	16	10
SMANIA UNIVER YDERABAD,(TS)	0620737071	0620737070	0620737069
RSITY	PETTAM KEERTHANA SREE	PASNURI ANUSHA	NEHA SIDDIQUI
	20	22	23
	20	20	20
	22	27	24
	25	25	28
	18	17	20
	16	13	20
_	25	23	27
6-02-202	18	17	21
Page No :4	18	19	20

2

HYDERABAD,(TS) OSMANIA UNIVERSITY

16-02-2023 17:11:54

B.E. - AICTE V Sem - 737 - I.T - 1606 - Stanley College of Engineering & Technology for Women , Chapel Road, Abids , Hyderabad

68	88	87	98	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	SNO
160620737312	160620737311°	160620737310	160620737308	160620737307	160620737306	160620737305	160620737304	160620737303	160620737302	160620737301	160620737079	160620737078	160620737077	160620737076	160620737075	160620737074	160620737073	160620737072	HTNO
BISHKUNDA JOSHNA	B KEERTHANA	MERUGU SHIVANI	DEEVELA NISHITHA	GUMMADI SAI SOWMYA	ANDEKAR RUCHITHA	GORIGA SHILPA	ARJUMAND AFROZE	SANA ALI	GOLLIPELLI POOJA	CHEERATH KEERTHI	NANDINI V	TOONDLA VAISHNAVI	SURU CHANDANA	SANA BEGUM	SAMIYA NAAZ	SABBANI ARCHANA	POSANI HARSHITHA	POLAPALLY ANSHU	Name
24	22	24	23	23	22	25	24	15	15	25	22	25	24	19	20	22	23	20	501S
25	23	25	20	25	19	24	21	18	15	25	24	25	24	18	17	20	24	18	5020
28	23	27	16	24	21	29	28	22	12	28	21	30	24	23	19	25	17	23	5031
26	27	27	25	25	20	30	27	24	12	30	19	29	27	22	23	25	23	26	519
27	20	12	17	18	15	28	27	17	12	27	16	29	28	12	18	16	12	12	535
27	15	12	15	19	12	28	28	12	12	28	17	28	28	12	16	16	12	15	537
27	24	21	14	25	19	29	27	20	12	28	26	30	25	25	23	27	16	22	538
23	23	20	14	23	17	25	22	16	18	25	20 ·	25	21	16	17	19	23	18	573
27	14	20	12	19	15	28	27	17	12	28	15	29	27	23	18	12	12	15	585

Print

			DEPARTME	INT OF INFOR	I PR SECTION TEC	CHNOLOGY	×.		
No.	Roll No.	P&S (SBS301MT)	OOPS Using Java (SPC3011T)	Digital Electronics & Logic Design	Database Management Systems	Discrete Mathematics (SPC3031T)	Electrical Technology (SAC903EE)	OOPS Using Java LAB (SPC3111T)	Databas Manageme Systems L
1	160621737001	21	25	23	22	24	28	25	(SrU3121
2	160621737002	38	38	38	34	39 1	36	39	30
3	160621737003	(35)	- 32	36	32	33	41	38	38
4	160621737004	38	32	39	33	39	39	35	40
2	160621737005	39	39	39	39	40.	49	39	40
9	160621737007	29	27,	38	28	35	35	30	34
-	160621737008	31	28	35	30	36	35	37	40
00	160621737009	38	36.	* 40	36.	39	44	38	40
6	160621737010	30	31	36	31.	33	43	38	35
0	160621737011	31	31	31	30	36	43.	34	37
a constant	160621737012	39 .	40	40	38	39	47	39	40
5	160621737013	37	30	38	31	38	42	36	35.
3	160621737014	36	34	35	30	34	37	38	37
4	160621737015	36	35	35	30	38	46	36	39
2	160621737016	37	32	34	32	36	39	38	38
9	160621737017	34	36	35	33	34	43	39	40
-	160621737018	21	23	21	26	34	26	32	33
8	160621737019	35	35	31	34	35	28	39	40
0	160621737020	37	32	37	26	34	41	35	29
	160621737021	23	28	25	28	35	34	30	27
	160621737022	39	37	39	35	40	48	39	40
~	160621737023	34	30	35	31	35	33	39	39
-	160621737024	39	34	38	34	36	42	36	38
	160621737025	26	31	, 25	29	34	43	36	33

· ···· v

50

40	54	10	UI UI	51	50	40	48	47	46	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	
CC0/ 6/ 170001	160621737055	100021/3/053	700/01/2/02020	1C0/C/120001	120/07/12/120001	160621727050	160621737049	160621727040	160621737040	100021737045	160621737044	160621737043	160621737042	160621737041	160621737040	160621737039	160621737038	160621737037	160621737036	160621737035	160621737034	160621737033	160621737032	160621737031	160621737030	160621737029	160621737028	1606217370.	A"ALCIT70001
33	35 2	27	33 .	30.	34	3	30 .	33	33	21	37	37	32	35	21	38	39	40	21	29	29	33	29	27	22	33	40	34	34
29	31 、	27.	34	30	31	J	32	17	32	30	37	38	30 ·	33	22	33 -	38	34	26	26	34	36	24	31	27	. 33	36	32	34
30 .	34 .	29.	36 -	34	31		75	33	36	26	38 .	39	23	30	20.	37	39	38	23 .	31	36	37	26	37	33 .	36	37	27'35	20130
29	30 .	30.	32 .	31	32	30	31	27	29	29	33 .	35	27	31	21 .	32	34	35	21	34	34	32	25	30	28 .	32	31	31	<u> </u>
35	36	34	38 .	37	36	32	35	35	36	31	40	39	28	34	28	36	40	38	33	31	38	40	34	33	31	34	39	37	38
38 .	43 .	31.	43	38	42	27 .	42	32	35	28	45 .	46	33	44	26 .	45	47	43	27	39	34	37	31	39	36	41	39	41	33
35	37 .	33	36	35	35	34 .	38	31	34	26	37	36	30	38	28	38	39	38	28	34	38	30	35	35	28	36	38	37	38
75	39	31	38	32	33	31	39	29	30	30	40	40	32	40	27	27	30	40	11	32	27	A		1 54	28	3	3	3	-

56 55 INCHARGE CLASS LAVA J-N DEUD der. DBMS Z Haver せき EI T reg. 6 PRINCIPAL JAVALAB BMS LAB

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Affiliated to Osmania University & Approved by AICTE) (All eligible UG Courses are accredited by NBA & Accredited by NAAC with 'A' Grade)

DEPARTMENT OF INFORMATION TECHNOLOGY B.E. VIII Semester, 2022-2023 PROJECT EVALUATION SHEET

Name of the Project Guide: EFFICIENT MONPAGMENT SYSTEM

Project Title: MS. NAHEED SULTANA .

BATCH.NO	ROLL NO.	NAME
	160619732080	NANDANAM VALLANAVI
18	160619737082	PAIDI SAI SRI
	160619737056	AENORA VARSHITA

S. No		7 0 0	1 01	7.7
1.	Regularity (5)	1080	1082	1056
		05	05	05
2.	Contribution of each team member (5)	05	03	03
3.	Report (7)	05	05	05
4.	Project Demonstration (3)	03	03	03
5.	Technical Knowledge and Awareness related to the Project (3)	02	02	02
6.	Outcome (Publication/ Product) (2)	01	01	01
7.	Total	21	18	19

Project Guide

HOD -IT

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Affiliated to Osmania University & Approved by AICTE) (All eligible UG Courses are accredited by NBA & Accredited by NAAC with 'A' Grade)

DEPARTMENT OF INFORMATION TECHNOLOGY B.E. VIII Semester, 2022-2023

PROJECT EVALUATION SHEET

Name of the Project Guide:Der Badugu SrinivasuProject Title:Design & Development of Emotion Recognition for
speech dateBATCH.NOROLL NO.NAME11160619737058Bellamkonda Meghana

S. No		7050	
		+058	
1.	Regularity (5)	5	
2.	Contribution of each team member (5)	5	
3.	Report (7)	7	
4.	Project Demonstration (3)	3	
5.	Technical Knowledge and Awareness related to the Project (3)	3	
6.	Outcome (Publication/ Product) (2)	2.	
7.	Total	25	

Project Guide

inivas

HOD -IT

6 [22 .	Kenales	7 NO March	4 medeulation	The Annualet		a single a) contend.	2 th throw all t	man min		I Not cured	the series	- he was a her	-9 Alent proceed	- the pas by		margare htpopped		3 months of pet	atol honey	p loid com	1 chood	1 Code Enem	·	7 7 - Davion	I Amprove with	- net	2 notal	No.	~			
T.	Student Signature	ŧ	Nicitee	Wilmin.	iting	K. Helchya	A. Raleshugar	A LUCORY A	NAN	start	Auchiah	h congretace	K. Sathinib	Merchal	6 - Chellips	1. stal	Beincle	Peachaceture	A	- Marchite	megrave	Var ohita	farto 2	(m. (valcel	Mahalath	A LANDAL A	Chaustra	n Cincurant	4-	A	,	5	
GY FOR WOMEN 0GY	Guide Name	ant de	Dr. K.Rama	Krishna	2		Ms Hajera Subani			Mrs G.Sreelatha			Mr T.Sandeep		•	Mrs Nagamani			Mrs Ruqia Alam		1.2	Mrs Niharika		Dr B Srinivasu			Ms Vishalini			Ms J Sumedha		and NLP	
VGINEERING AND TECHNOLO OF INFORMATION TECHNOLO PROJECT BATCH 1 LIST	Tentative Title	App for online of appointm	E horeaded Recognition based	Attendance system	text-speech Recongnition	0	Weather Forecast using Python	Hand withen degit	Recognition system	Object Detection and Classification	Phachium Deledion	· left	Chatbot using Artifical Intelligence	Employee finesical	Gareer Guidance on Engineering	Streams		Student Result Management	System	casica guidanu System	Using ML	City Core Prediction	on Hand Cestures Using Machine	Learning.	AUTOMOLIC LOXA		Color Detector System in Python	Jarler Mar Sus.	Food Filters using Javascript in	Snapchat/Instagram		+ druelips of her	
Y COLLEGE OF EN DEPARTMENT MINI	Name	Gorityala Nandini	Yenumula.Nikitha	Nandanam Vaishnav	G.Sai Meghana	Alekhya Kulkarni	Amaraboina.Rajeshv	B.Aishwarya	Alli Sahithi	Ananthoju Sai Sreey	Ayesha Jahan	K.Sangeetha	K.Sathvika	Mirupati Sneha Redd	G Chetna	Cheera Sharanya	M Brinda Iyengar	K.Praharsha	D. Sindhu	K.Harshitha	Bellamkonda Megha	A. Varshita Reddy	K.Harika	o Vanaja	3.Mahalaxmi Rao). Niharika). AKShitha	sollam Preethi	chowhan Ananya Sil		deutemen	>
STANLE	Roll.no.	160619737070	160619737051	160619737080	160619737071	160619737057	160619737052	160619737062	160619737054	160619737053	160619737055	160619737074	160619737075	160619737079	160619737069	160619737063	160619737078	160619737077	160619737067	160619737073	160619/3/058	160619737056	160619/3/0/6	160619/3/068 (160619737060	100/0/010/010/01	160619737066 L	160619/3/060	160619737059 E	160619737064 C			
-	am No Sno	-	2	1	4	5	2 6	2	0	6	10		4 12	13	14	5 15	16	17	6 18	19	20	7 21	22	8 23	24	C7	9 26	17	28	0 29			
l	Te		5	>	-	>			1			7			7			3			2		-/	>				1	>	-			

STALL

-

1.12
1.00

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN DEPARTMENT OF INFORMATION TECHNOLOGY

•

4

the state of the second second		Romarks																													
- (- 16-6	XUXI V	Guide Signature	0	2		10	arole -	XX		Lave Ser		0		1		1 mg	~~~		Je.	M			3			V				À	
Them Aru	Cuide Name	OUIDO NAMO		No V Dane Vistan	UI. N.Nalila NISIIIa			MS Hajera Subani			Mrs G.Sreelatha			Mr T.Sandeep			Mrs Nagamani			Mrs Ruqia Alam			Mrs Niharika		Dr B Srinivasu			Ms Vishalini		Ms J Sumedha	
DEPARTMENT OF INFORMATION TECHNOLOGY MINI PROJECT PATCH 1 LIST	Tontative Title			App for Online appointment and hospital information sustam			Text to speech reconsiston			Object Detection and Classification			Dianiariem Detection Text			Employee Financial Analysis Helpo Historyhood Chanadan			Student Result Management System			Web crawler using puthon	Sign Language Develop Paced on Hand Control	Machine Learning Machine Learning	Builder Sumanne		Automatic taxt summarized			Tailor Management System	
and the second se	Namo	Gorityala Nandini	Yenumuta.Nikitha	Nandanam Valshnavi	G.Sai Meghana	Alekhya Kulkarni	Amaraboina.Rajeshwari	B.Aishwarya	Alli Sahithi	Ananthoju Sai Sreeya	Ayesha Jahan	K.Sangeetha	K.Sathvika	Mirupati Sneha Reddy	G Chetna	Cheera Sharanya	M Brinda Iyengar	K.Praharsha	D. Sindhu	K.Harshitha	Bellamkonda Meghana	A.Varshita Reddy	K.Harika	G Vanaja	B.Mahalaxmi Rao	Bandi.Charishma Chowda	D. Niharika	D. Akshitha	Boltam Preethi	Chowhan Ananya Singh	
	Roll.no.	160619737070	160619737051	160619737080	160619737071	160619737057	160619737052	160619737062	160619737054	160619737053	160619737055	160619737074	160619737075	160619737079	160619737069	160619737063	160619737078	160619737077	160619737067	160619737073	160619737058	160619737056	160619737076	160619737068	160619737060	160619737061	160619737066	160619737065	160619737059	160619737064	
	Sno	-	2	3	4	5	9	~	8	6	5	=	12	13	14	15	16	5	18	19	20	21	22	23	24	25	26	27	28	29	
	Toam No			-			2			3			4			5			9		,	~	1	8			6			01	

Stanley College Of Engineering And Technology For Women **Department of Information Technology** BE VI SEM- B SEC-MiniProject2021-22 Internal Guide Review Sheet

Project Title: APPLICATION FOR ONLINE OPD APPOINTMENT & HOSPITAL INFORMATION SYSTEM. Internal Guide:...Dx.:.K.: RAMAKRISHNA

Student - 1: Name: N: VAISHNANI. R. No: 160.6197.37.0.8.0.... R. No: 160.6.19.7.3.70.51....

Batch No:.....

R. No: 16061973707.0...

SNo.	Date	Purpose of Meet	Signature	Remarks
1.	18/4/22	Idea Presentation	Built	Come with two ideas of folalized
2	25/4/22	Introduction, Existing & Proposed System	70.	Engquested its Change to may
3	25/4/22	System Requirements, modules presentation	South	Ray an developer may ent affer dormation
4	14/6/22	Design Presculation	Ruf	forg Degound
S	21/6/22	Coding-(pastoa)	put	Partial Codie is Show previored
6	28/6/22	Coding Implementation	· But	Magnetty core
		1		
				L.
W		k		1
nal Gu	uide l	Project Coordinator		HOD

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Affiliated to Osmania University & Approved by AICTE)

(All eligible UG Courses are accredited by NBA & Accredited by NAAC with 'A' Grade)

DEPARTMENT OF INFORMATION TECHNOLOGY B.E. VI Semester B Sec, 2021-2022

Internal Project Evaluation

Project Title: Application for Online OPD appoint and Name of the Project Guide: Dr. & Ramaberilia.

BATCH.NO	ROLL NO.	NAME
	160619737080	N. Vaishnavi
1	160619737051	Y. Nikitha
	1606 1973 7070	G. Nandini

5. No		80	5	70
1.	Problem Selection(2)	2	2	2
2.	Domain knowledge and technical knowledge (3)	*2	2	2
3.	Design Methodology(4)	3	3	3
4.	Presentation (3)	2	3	2
5.	Q & A (3)	3	3	3
		12	13	12
\bigcirc		-		

Project Avide

Project Coordinator

HOD -IT

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (rsupriya2903@gmail.com) was recorded on submission of this form.

Name *	
R Supriya	
Roll No *	
160621737116	
1. The time complexity of merge sort is *	
1. The time complexity of merge soft is	1 point
O (nlogn)	1 point
 O(nlogn) O(n) 	1 point
 O(nlogn) O(n) O(n2) 	1 point
 O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
d1 only
O d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (harshithacheriyal@gmail.com) was recorded on submission of this form.

Name *	
CH HARSHITHA	
Roll No *	
160621737073	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (archanaarchu61507@gmail.com) was recorded on submission of this form.

Name *	
Smriti Sambrani	
Boll No *	
160621737120	
1. The time complexity of merge sort is \star	1 point
O(nlogn)	
O(n)	
O 0(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	
- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
● d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (netrakatre1@gmail.com) was recorded on submission of this form.

Name *	
Netra katre	
Roll No *	
160621737107	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
● d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (deepthikonda694@gmail.com) was recorded on submission of this form.

Name *	
Konda Deepthi	
Roll No *	
160621737091	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (harinieslavath@gmail.com) was recorded on submission of this form.

Name *	
E.Harini	
Roll No *	
160621737079	
1 The time complexity of merge sort is *	
	1 point
	1 point
 O(nlogn) O(n) 	1 point
 O(nlogn) O(n) O(n2) 	1 point
 O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
S False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (meharjowhari@gmail.com) was recorded on submission of this form.

Name *	
Mehar Lakshmi Jowhari Bai	
Roll No *	
160621737099	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sowmyathokati@gmail.com) was recorded on submission of this form.

Name *	
THOKATI SOWMYA	
Roll No *	
160621737126	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
O Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- 0(n) < 0(log n) < 0(n* log n) < 0(n2)<0(2power n)
- O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
 10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by d1 only d2 only
 d1 and d2 None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (nikhitakarna@gmail.com) was recorded on submission of this form.

Name *	
Karna .Nikhita	
Roll No *	
160621737088	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (saralabai.j23@gmail.com) was recorded on submission of this form.

Name *	
Sarala bai	
Roll No *	
160621737085	
1. The time complexity of merge sort is *	1 point
 1. The time complexity of merge sort is * O(nlogn) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
 None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahekbagga56@gmail.com) was recorded on submission of this form.

Name *	
Mahek Deep Kaur Bagga	
Roll No *	
160621737095	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- **(** $O(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
Implicit constraints Evaluate Constraints
 O Explicit Constraints O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (navithaamudala16@gmail.com) was recorded on submission of this form.

Name *	
A Navitha	
Roll No *	
160621737066	
1. The time complexity of merge sort is $*$	1 point
● O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	
- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by O d1 only
● d2 only
O d1 and d2
None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sheza.askander@gmail.com) was recorded on submission of this form.

Name *	
Sheza Khader Askander	
Boll No *	
160621737122	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- **(** $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (musharani2902@gmail.com) was recorded on submission of this form.

Name *	
M Usharani	
Roll No *	
160621737103	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mirdoddiroshini4@gmail.com) was recorded on submission of this form.

Name *	
Mirdoddi roshini	
Roll No *	
160621737101	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sruthiundamatla2201@gmail.com) was recorded on submission of this form.

Name *	
Sruthi	
Roll No *	
160621737127	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (ridafatima2573@gmail.com) was recorded on submission of this form.

Name *	
Rida Maryam Fatima	
Roll No *	
160621737119	
1. The time complexity of merge sort is *	1 noint
T. The time complexity of merge soft is	i point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (geethanjalipatel6@gmail.com) was recorded on submission of this form.

Name *	
M.Geethanjali	
Roll No *	
160621737310	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mlkruthika13@gmail.com) was recorded on submission of this form.

Name *	
M.laxmi kruthika	
Roll No *	
160621737097	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
Logarithmic	
C Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (meghanapyaram369@gmail.com) was recorded on submission of this form.

Name *	
Meghana	
Roll No *	
160621737115	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
O True
• False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (charanimadishetti0701@gmail.com) was recorded on submission of this form.

Name *	
M.K.Charani	
Roll No *	
160621737093	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	
- **()** $O(\log n) < O(n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (deekshasiripuram@gmail.com) was recorded on submission of this form.

Name *	
S.deeksha	
Roll No *	
160621737124	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- 0(n) < 0(log n) < 0(n* log n) < 0(n2)<0(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
● d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (akshithapeepalpat543@gmail.com) was recorded on submission of this form.

Name *	
Peepalpat Akshitha	
Roll No *	
160621737112	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
Implicit constraints
 Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
I and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kagithalaanjali026@gmail.com) was recorded on submission of this form.

Name *	
Kagithala Anjali	
Roll No *	
160621737087	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O (n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (pothravenikavyasri@gmail.com) was recorded on submission of this form.

Name *	
P.Kavya Sri	
Roll No *	
160621737114	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kalyanin2003@gmail.com) was recorded on submission of this form.

Name *	
N. Kalyani	
Roll No *	
160621737106	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- **()** $O(\log n) < O(n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jalkamsomiya@gmail.com) was recorded on submission of this form.

Name *	
Jalkam Sowmya	
Roll No *	
160621737084	
1. The time complexity of merge sort is $$ *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jogakeerthana@gmail.com) was recorded on submission of this form.

Name *	
Joga Keerthana	
Roll No *	
160621737083	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- 0(n) < 0(log n) < 0(n* log n) < 0(n2)<0(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
● d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (saiharshitha090@gmail.com) was recorded on submission of this form.

Name *	
D Sai Harshitha	
Roll No *	
160621737076	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
 True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (abhithasriabhi@gmail.com) was recorded on submission of this form.

Name *	
Abhitha Sri	
Roll No *	
160621737108	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	
- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- **(** $O(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kadamarundathipatel@gmail.com) was recorded on submission of this form.

Name *	
Kadam Arundathi Patil	
Roll No *	
160621737086	
1. The time complexity of merge sort is *	1 point
• O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sirireddy1808@gmail.com) was recorded on submission of this form.

Name *	
Aishwarya Reddy	
Roll No *	
160621737129	
1. The time complexity of merge sort is *	1 point
• O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by O d1 only
d2 onlyd1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (nidhi1sreshta@gmail.com) was recorded on submission of this form.

Name *	
Nidhi Sreshta	
Roll No *	
160621737070	
1. The time complexity of merge sort is *	1 point
\bigcirc $O(plogp)$	
O(n)	
\bigcirc $O(n)$	
 None of the above 	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point
with lesser profit and more weight.
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (adullanithya296@gmail.com) was recorded on submission of this form.

Name *	
Adulla Nithya	
Roll No *	
160621737068	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahalaxmipatel06@gmail.com) was recorded on submission of this form.

Name *	
Mahalaxmi Patel	
Roll No *	
160621737075	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
● d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahin.mahinfatima@gmail.com) was recorded on submission of this form.

Name *	
Mahin Fatima	
Roll No *	
160621737096	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by O d1 only
O d2 only
 d1 and d2 None of the choice

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (manihaamatul4@gmail.com) was recorded on submission of this form.

Name *	
Maniha	
Roll No *	
160621737098	
1. The time complexity of merge sort is *	1 point
 The time complexity of merge sort is * O(nlogn) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- 0(n) < 0(log n) < 0(n* log n) < 0(n2)<0(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
O Dead node	
O Live node	
E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (palledeekshitha704@gmail.com) was recorded on submission of this form.

Name *	
PALLE DEEKSHITHA	
Roll No *	
160621737111	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(nlogn)O(n)	
 O(nlogn) O(n) O(n2) 	
 O(nlogn) O(n) O(n2) None of the above 	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
I only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (rharshitha510@gmail.com) was recorded on submission of this form.

Name *	
N. Harshitha	
Roll No *	
160621737105	
1. The time complexity of merge sort is $*$	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
Logarithmic	
C Linear	
O Polynomial	
- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by O d1 only
 d2 only d1 and d2 None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kolaganialankrutha@gmail.com) was recorded on submission of this form.

Name *	
Kolagani Alankrutha	
Roll No *	
160621737090	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (aishwaryadutpala@gmail.com) was recorded on submission of this form.

Name *	
D Aishwarya	
Roll No *	
160621737077	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
Ojikstra's Algorithm	
Kruskal's Algorithm	
2. What is the type of the algorithm used in aching the 9 Queens problem?	
3. What is the type of the algorithm used in solving the 8 Queens problem?	1 point
Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- **()** $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
Implicit constraints
O Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (shireenunnisa8134@gmail.com) was recorded on submission of this form.

Name *	
Shireen Unnisa	
Roll No *	
160621737123	
1. The time complexity of merge sort is *	1 point
• O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jyothi.koda38@gmail.com) was recorded on submission of this form.

Name *	
koda jyothi	
Roll No *	
160621737089	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- **()** $O(\log n) < O(n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
Implicit constraints
O Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (chittimallevaishnavi@gmail.com) was recorded on submission of this form.

Name *	
c.vaishnavi	
Roll No *	
160621737072	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $*$	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahin.mahinfatima4@gmail.com) was recorded on submission of this form.

Name *	
Mahin Fatima	
Roll No *	
160621737096	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
O Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (vennelaracha@gmail.com) was recorded on submission of this form.

Name *	
Vennela	
Roll No *	
160621737118	
1. The time complexity of merge sort is *	1 point
 1. The time complexity of merge sort is * O(nlogn) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $O(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
O Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
• True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (umaimasyed2003@gmail.com) was recorded on submission of this form.

Name *	
Syeda Umaima Nazneen	
Roll No *	
160621737125	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (alainaather29@gmail.com) was recorded on submission of this form.

Name *	
Alaina Ather	
Roll No *	
160621737069	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? $$ *	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- **()** $O(\log n) < O(n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- O(log n) < $O(n) < O(n * \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
o d1 only
O d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (adidah.qureshi.786@gmail.com) was recorded on submission of this form.

Name *	
Mubeena	
Roll No *	
160621737102	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
O Greedy	
O Dynamic Programming	
Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- O(n) < O(log n) < O(n* log n) < O(n2)<O(2power n)
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
Dead node	
C Live node	
O E node	
O Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints
O None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
● d1 only
O d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jahnavireddy294@gmail.com) was recorded on submission of this form.

Name *	
Jahnavi Reddy	
Roll No *	
160621737071	
1. The time complexity of merge sort is *	1 point
O(nlogn)	
O(n)	
O(n2)	
O None of the above	

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
O Ford Fulkersons Algorithm	
Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? \star	1 point
• Greedy	
O Dynamic Programming	
O Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
Linear	
O Polynomial	

5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- \bigcirc O(log n) < O(n) < O(n* log n) < O(2n) < O(n2)
- $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
- $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- $O(\log n) < O(n) < O(n* \log n) < O(n2) < O(2power n)$

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
O Dead node	
Live node	
O E node	
O Answer node	

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
 Implicit constraints Explicit Constraints None of the above
 9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight. True False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kaverishabad27@gmail.com) was recorded on submission of this form.

Name *	
Kaveri	
Roll No *	
160621737307	
1. The time complexity of merge sort is $*$	1 point
 1. The time complexity of merge sort is * O(nlogn) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) 	1 point
 1. The time complexity of merge sort is * O(nlogn) O(n) O(n2) None of the above 	1 point

2. Which of the following algorithms is used to find the shortest path between two vertices in a graph with negative edges?	* 1 point
Ford Fulkersons Algorithm	
O Bellman Ford Algorithm	
O Djikstra's Algorithm	
Kruskal's Algorithm	
3. What is the type of the algorithm used in solving the 8 Queens problem? *	1 point
Greedy	
O Dynamic Programming	
O Backtracking	
O Branch and Bound	
4. O(n) means computing time is *	1 point
Quadratic	
O Logarithmic	
C Linear	
O Polynomial	

5. Which of the following shows the correct relationship among some of the more common computing times on algorithms

- **()** $O(\log n) < O(n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(2n) < O(n2)$
 - $0(n) < O(\log n) < O(n* \log n) < O(n2) < O(2power n)$
- \bigcirc O(log n) < O(n) < O(n* log n) < O(n2)<O(2power n)

7. A node that cannot be further generated and does not provide a particular solution is called	* 1 point
• Dead node	
C Live node	
O E node	
Answer node	

* 1 point

8. The rule that restricts every element to get chosen from a particular set is called * 1 point
Implicit constraints
 None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
True
O False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be * 1 point decided by
O d1 only
O d2 only
O d1 and d2
O None of the above

This form was created inside of Stanley College of Engg & Tech for Women.

Google Forms

Stanley College of Engineering and Technology for Women Department of Information Technology Main Projects A-Sec 2022-23

-

Batch	Cluster	Roll No	Name of the Or	T		Date :- 19-01-2023		
	1	160619737036	Dia il	Domain	Title	T		
1	2	160619737006	Phaniharam Hrudya		inde	Guide	Slot Tim	
	3	160619737004	Atmakuri Mounika	deep learning & machine	surveillance using object			
		100013/3/001	Shanmukhi Akkiraju	learning.	identification M	Mr.T.Sandeep	09:00	
	1	160619737039	Rupaji Aishwapia					
2	2	160619737020	Kanta Sakshitha					
	3	160619737044	Shilpi Priyanka	machine learning.	Fake websites url detection	Mrs.N. Niharika	09:30	
	1	160619737014	Gangayaram Wishnoui					
3	2	160619737010	Chintal Swetha	A-110-1-11-1-11				
	3	160619737021	Karne Sriramya	Artificial Intelligence La	Language translator	Ruquia	10:00	
	1	160619737026	Mah Jahara Fatima					
4	2	160619737028	Mari Jabeen Fatima	Machine Learning	Conversion of scanned	Dr. B Srinivasu		
	3 16061	160619737015	Golconda Vaishnavi		documents to text documents using OCR techniques		10:30	
- H	1	160619737037	Yamini Yadav					
5	2	160619737041	Sanskriti Agarwal	Machine learning	Object detection for blind	vishalini	11:00	
	3	160619737009	Samriddhi Biradhar					
	1	160619737045	Srija Yaday V					
6	2	160619737013	Fatima Afra Nida	IOT IOT based Air pollution Dr. G Sreelatha	Dr. G. Sreelatha	11:30		
	3	160619737047	Syeda Khadija Fatima		monitoring system	or. o oreelatria		
7	1	160619737022	Kavya Myakala	machine learning	prediction of cyberbullying using	Dr. B Srinivasu	12:00	
	2	160619737048	Chandana		ML			
	1	160619737025	Krishna Madhumitha		commercial crop monitoring		12:30	
8	2	160619737003	Ameena Fatima	IoT and ML	system	Ms J Sumedha	12.50	
Γ	3	160619737018	Ismath Razi					

9	1	160619737030	9737030 Padigela Sahithi	Machine Learning And Deep Learning	Dynamic Virtual Assistance for	Dr. B Srinivasu	01:00
		160619737012	Dronavalli Darvika		Educational institutions		
	1	160619737024	k shirisha				
10	2	160619737008	B. Sri Charani	Machine learning	prediction of Stock market trends	Ch. Sreelatha	01:30
	3	160619737019	J.srinija				
		160619737029	Nuono Nousio Sti				
11	2	160619737029	Ri abari	Machine learning and Deep	Text summeriazation for Telugu	Mr T Sandoon	02:00
3	160619737034	Ambati Lahari	learning	document	Mr. I.Sandeep	02:00	
	1	160619737040	Ryala Akshitha				
12 <u>2</u> 3	160619737033	Pendyala Meghana	machine learning	Authorised Parking System using	C Scelethe mem	02:20	
	3	160619737016	Gudipati Venkata Satya Charitha	machine learning.	Raspberry Pi	G Steelalina main	02.30
1	160619737050	Uduthala Rajeshwari					
13	2	160619737049	Thumpala Bhargavi Nagalakshmi	Machine learning	price prediction of digital currency	Naagmani	03:00
	3	160619737004	Anupur Sushmitha Rayan				
	1	160619737031	Palabindela Usbasri				
14	2	160619737032	Pandi Madhulika	Network security	Text Encryption using Aes Algorithm	Mrs.T C Swetha Priya	03:30
	3	160619737042	Sare Hyndavi				
		100010707011					
16	1	160619737011	Deekshitha Kancharakuntla		Weapon detection and abnormal	Hajera	-
15	3	160619737007	Nellavelli sowmva	Machine learning	behaviour detection		04:00
	1	160619737046	Swetha Ponnapali				
6	2	160619737043	Sharia Zainab	Machine learning	sign board translator for tourism	Dr. B. Srinivosu	04.45
_	3	160619737038	Rida Fatima			Dr. b .Srinivasu	04:15
-	1	160619737035	Periketi Harshitha				
· t	2	160619737005	Arisha Subel	Android App Development	Food wasto reduction and the	21.0.100	
H	3	160619737017	lora Mahanaar	And out App Development	Food waste reduction application	Dr. B .Srinivasu	04:30

HOD

.....

Stanley College of Engineering and Technology for Women Department of Information Technology Main Projects B Section 2022-23

Date - 20-01-2023

Batch	Cluster	Roll No	Name of the Student	Domain	Title	Guide	Slot Time
	1	160619737086	SALLA SHIRISHA				
1	2	160619737093	THADEM BHARGAVI	Cloud Computing	Secure Cloud Storage Based On	Dr Gavini Sreelatha	09:00
	3	160619737067	DYAGA SINDHU		REWE problem		
_							
	1	160619737062	BIBINAGAR AISHWARYA				
			KOMMURU HIMA SRI SAI	Web development	Student Result & Feedback	Mrs.N. Niharika	09:15
2	2	160619737077	PRAHARSHA	inco de la compañía de la	System		
	3	160619737065	D AKSHITHA				
	1	160619737078	M BRINDA IYENGAR		Cyberbullying intensity and		00.30
3	2	160619737076	KATAKAM HARIKA	Machine learning	category prediction of tweets	Ur.Gavini Sreeiana	09.30
	3	160619737305	NAMILE MANASA				
		100010707070					
. +	2	160619737079	MIRUPATI SNEHA REDDY	Marking Jacoming	Student pedarmance analysis	Haleera	09:45
4	2	160619737071	GUNDAPANENI SAI MEGHANA	Machine learning	Student performance analysis	r ajoci a	
	3	160619737057	ALERHIA KULKARNI				1
		100010707000					
. 1	1	160619737084	QANSA WASIF ALI	11 . 11 . 1	C shares shure crediction	(Dr. Srichash Baduch)	10:00
2	2	160619737098	Y.VYSHNAVI REDDY	Machine learning	Customer chum prediction	(Dr. Shirrase Daebye)	10.00
	3	160619/3/08/	SHARIKHA ANJUM				1
-+							
	1	160619737061	BANDI CHARISHMA CHOWDARY				
6 -	2	160619737064	CHOWHAN ANANYA SINCH	machine learning	machine learning algorithms	J.Sumedha	10.15
H	2	160619737064	CHOWHAN ANANTA SINGH		machine learning algorithms		1
		160619/3/059	BOLLAM PREETHI				-
-+		100010707070					+
- +	-	160619737055	ATESHA JAHAN	Developming	Image Orator	Mr. Nahaad Sultana	10.30
′ -	2	160619/3/088	SANOBAR SHADAN	Deep Learning	Image Orator	NIS. Nalleeu Juliana	10.50
	3	160619737096	YASMEEN FATIMA				
H	1	160619737063	CHEERE SHARANYA		Library And permission		
8	2	160619737069	GOGIKAR CHETNA	Web Development	management for faculty and	T.sandeep	10:45
	3	160619737052	AMARABOINA RAJESHWARI		siddenis		-
。 L	1	160619737073	K. HARSHITHA	NIP	Audio to sign language using nin	Ms vishalini krishnan	11:00
5	2	160619737090	SAI DEEKSHITHA PONUGOTI				
	1	160619737302	P. Harshini	Machina learning	stock market prediction	(Dr. Stielkast, Badurau)	
" F	2	160619737304	Preethi .J	Wachine learning	alock market predication	(Dr. Similase bacege)	
				Dava lasmina	Speech emotion detection using	De Stalans, Bathan	
	1 1	160619737058	BELLAMKONDA MEGHANA	Deeplearning	deep learning	Dr. Shiniyasu Badugu	11.5
	1 1	60619737074	K SANGEETHA				
2 -	2 1	60619737060	BELLAMKONDA MAHALAXMI	Machine learning	Fake User identification on social	CH, Srilatha	1
	3 1	60619737054	ALLISAHITHI		network		12.0
-		00013737034	ALLIGATIT				
-			05111141044				
-	1 1	60619/3/303	GELLI KAVYA		lung cancer prediction using ct		
3	2 1	60619737301	P. Harshitha	Machine learning	scan images	(Dr. Srinivasu Badugu)	
	3 1	60619737306	SANJANA				12:
	1 1	60619737053	ANANTHOJU SAI SREEYA				
4	2 1	60619737081	P SNEHA	web development and cloud	cloud based metro rail portal	Dr. Srinivasu Badugu	
	3 1	60619737099	VUPPUNUTHULA INDU PRIYA	computing			01
		00010101000	VOLT ONOTHOES INDO FRITS				
-	1 1	60610707000	0.14111				
	2 1	00019737068	G VANAJA			TOO who Date	
" -	2 1	00619737094	THONTA SAI SRUTHI	Machine learning	Signature verification system	T C Swetha Phya	
_	3 1	60619737066	DONTULA NIHARIKA				
	1 1	60619737095	TUMMA KALA SWARUPA RANI				
	2 1	60619737075	KAPPA SATHVIKA	web development	placement management system	T C Swetha Priya	
-	3 1	60619737091	SREYA DESUBANDE	web development	placement management system		0
+		000101001	SHE TA DESTIPANUE				
-							
	1 1	60619737070	GORITYALA NANDINI				I

5

-

Stanley College of Engineering and Technology for Women Department of Information Technology Main Projects B Section 2022-23

Date - 20-01-2023

Batch	Cluster	Roll No	Name of the Student	Domain	Title	Guide	Slot Time
	1	160619737086	SALLA SHIRISHA				
1	2	160619737093	THADEM BHARGAVI	Cloud Computing	Secure Cloud Storage Based On	Dr Gavini Sreelatha	09:00
	3	160619737067	DYAGA SINDHU		REWE problem		
_							
	1	160619737062	BIBINAGAR AISHWARYA				
			KOMMURU HIMA SRI SAI	Web development	Student Result & Feedback	Mrs.N. Niharika	09:15
2	2	160619737077	PRAHARSHA	inco de la compañía de la	System		
	3	160619737065	D AKSHITHA				
	1	160619737078	M BRINDA IYENGAR		Cyberbullying intensity and		00.30
3	2	160619737076	KATAKAM HARIKA	Machine learning	category prediction of tweets	Ur.Gavini Sreeiana	09.30
	3	160619737305	NAMILE MANASA				
		100010707070					
. +	2	160619737079	MIRUPATI SNEHA REDDY	Marking Jacoming	Student pedarmance analysis	Haleera	09:45
4	2	160619737071	GUNDAPANENI SAI MEGHANA	Machine learning	Student performance analysis	r ajoci a	
	3	160619737057	ALERHIA KULKARNI				1
		100010707000					
. 1	1	160619737084	QANSA WASIF ALI	11 . 11 . 1	C shares shure crediction	(Dr. Srichash Baduch)	10:00
2	2	160619737098	Y.VYSHNAVI REDDY	Machine learning	Customer chum prediction	(Dr. Shiarase bacoge)	10.00
	3	160619/3/08/	SHARIKHA ANJUM				1
-+							
	1	160619737061	BANDI CHARISHMA CHOWDARY				
6 -	2	160619737064	CHOWHAN ANANYA SINCH	machine learning	machine learning algorithms	J.Sumedha	10.15
H	2	160619737064	CHOWHAN ANANTA SINGH		machine learning algorithms		1
		160619/3/059	BOLLAM PREETHI				-
-+		100010707070					+
- +	-	160619737055	ATESHA JAHAN	Developming	Image Orator	Mr. Nahaad Sultana	10.30
′ -	2	160619/3/088	SANOBAR SHADAN	Deep Learning	Image Orator	NIS. Nalleeu Juliana	10.50
	3	160619737096	YASMEEN FATIMA				
H	1	160619737063	CHEERE SHARANYA		Library And permission		
8	2	160619737069	GOGIKAR CHETNA	Web Development	management for faculty and	T.sandeep	10:45
	3	160619737052	AMARABOINA RAJESHWARI		siddenis		-
。 L	1	160619737073	K. HARSHITHA	NIP	Audio to sign language using nin	Ms vishalini krishnan	11:00
5	2	160619737090	SAI DEEKSHITHA PONUGOTI				
	1	160619737302	P. Harshini	Machina learning	stock market prediction	(Dr. Stielkast, Badurau)	
" F	2	160619737304	Preethi .J	Wachine learning	alock market predication	(Dr. Similase bacege)	
				Dava lasmina	Speech emotion detection using	De Stalans, Bathan	
	1 1	160619737058	BELLAMKONDA MEGHANA	Deeplearning	deep learning	Dr. Shiniyasu Badugu	11.5
	1 1	60619737074	K SANGEETHA				
2 -	2 1	60619737060	BELLAMKONDA MAHALAXMI	Machine learning	Fake User identification on social	CH, Srilatha	1
	3 1	60619737054	ALLISAHITHI		network		12.0
-		00013737034	ALLIGATIT				
-			05111141044				
-	1 1	60619/3/303	GELLI KAVYA		lung cancer prediction using ct		
3	2 1	60619737301	P. Harshitha	Machine learning	scan images	(Dr. Srinivasu Badugu)	
	3 1	60619737306	SANJANA				12:
	1 1	60619737053	ANANTHOJU SAI SREEYA				
4	2 1	60619737081	P SNEHA	web development and cloud	cloud based metro rail portal	Dr. Srinivasu Badugu	
	3 1	60619737099	VUPPUNUTHULA INDU PRIYA	computing			01
		00010101000	VOLT ONOTHOES INDO FRITS				
-	1 1	60610707000	0.14111				
	2 1	00019737068	G VANAJA			TOO who Date	
" -	2 1	00619737094	THONTA SAI SRUTHI	Machine learning	Signature verification system	T C Swetha Phya	
_	3 1	60619737066	DONTULA NIHARIKA				
	1 1	60619737095	TUMMA KALA SWARUPA RANI				
	2 1	60619737075	KAPPA SATHVIKA	web development	placement management system	T C Swetha Priya	
-	3 1	60619737091	SREYA DESUBANDE	web development	placement management system		0
+		000101001	SHE TA DESTIPANUE				
-							
	1 1	60619737070	GORITYALA NANDINI				I

5

-

					Multimodal fusion of fake news	D. Cristers Badres	1 010
20	2	160619737089	SAEEDAH ZAINA SHAIK	Mic, mee development	using mi and deep learning		+
20	1	160619737085	RINKU SONI	MI Web development	Classification of breast cancer	Ms.Nagamani	04:00
	3	160619737097	YATA ASHWINI		Children		
19	2	160619737083	PALNATI SNEHA	Android	the Mathematical Skills for Autistic	(Dr. Srinivasu Badugu)	03:30
1	160618737047	NAGA HARITHA		A Game-based App for teaching			
		160619737056	AENDRA VARSHITHA REDDY				
2	160619737082	PAIDI SAI SRI	Web Application	Student attendance System	Ms. Naheed Sultana	03:00	
18	1	160619737080	NANDANAM VAISHNAVI				
_		100019737092	SUNKARA SAI SPANDANA		Boosting Clasman		02:30
1	3	160619737051	YENUMULA NIKITHA	Machine learning	Eligibility Prediction using Gradient	Ms.Nagamani	

HOD

2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

- Examination procedures
- Processes integrating IT
- Continuous internal assessment system

IV. SCHEME OF INSRTUCTION AND EXAMINATION

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employability Enhancement Courses. Employability Enhancement Courses include Project Work, Seminar, Professional Practices, Case Study and Industrial/Practical Training.

Appearance in End Semester Examination is mandatory for all Courses including theory, laboratory and project work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE). For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini & Major Projects, Field works & Internships, Technical Seminars & Paper writing etc. are 16.

S.No	Category of course	Continuous Assessments	End-Semester Examinations
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks
2.	Laboratory Courses	40 Marks	60 Marks
3.	Project	80 Marks	120 Marks

Each course shall be evaluated for a maximum of 100 marks as shown below:

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization, design thinking, internship, industry oriented mini-project, project stage-I and project stage-II Courses shall be evaluated for 100 marks each.

Theory Courses :

- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Internal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Continuous Internal Evaluation (CIE - 40 M):

 Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M), Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination (25 M):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The optional third sessional/Internal exam with full syllabus will be conducted. Average of best two sessional Exams shall be calculated and used as the final sessional marks for each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:
 - PART-A: 5 X 2 M = 10 M

All questions are compulsory.

PART-B: 3 X 5 M = 15 M

In Part-B three out of four questions have to be answered.

Class Assessment (CA -5M):

The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

Activity	Max.Marks (5M)	
Technical Participations in inter College Competitions / Paper Presentations / Publications	5 Per Activity	
Certification Courses (SWAYAM,NPTEL or Relevant online Recommended Course etc)	5 Per Activity	
Course Project/Project Based Learning (PBL) (Group of three Students)	5 Per Activity	
Viva (Conducted by Course Committee)	5	

he valuation and verification of answer scripts of CIE shall be completed within a week after the conduct of the examination.

Semester End Examination (SEE - 60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration.
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

PART-A: 5 X 2 M = 10 M

- a. There shall be one question from each unit.
- b. All questions are compulsory.

PART-B: 5 X 10 M = 50 M

- There shall be one question from each unit with internal choice i.e., 'either' 'or' choice.
- b. The student shall answer one question from each UNIT.
- c. There could be a maximum of two sub divisions in a question i.e., (a) and/or (b).

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

- i) 60 Marks are allocated for quality of the project work covering
 - a. Literature-review, -10
 - b. Innovation / Originality 10
 - c. Methodology 20
 - Relevance / Practical application which will be awarded jointly by the internal and external examiners. 20
- 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

1	÷	
٦	a. 1	
	*	
		-

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

STLW/EB/Circular/2022-23/128

Date: 04.07.2023

Satyp traind

B.E-Internal Examination- I Circular

- 1. The I Internal Examinations for B.E- II Sem are being scheduled from 13th - 15th July, 2023.
- 2. The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before 10th July, 2023 before 03.30PM without fail.
- 3. The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -

Part-A - 5*2M =10M (All questions are compulsory) Part-B - 3*5M=15M (3 out of 4 have to be answered)

- 4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
- 5. The HODs are requested to verify the submission of all subject Question papers on time.
- 6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before 10th July, 2023 without fail.

Jused

04.07.2023

B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

			B (EEE	ECE & IT)	
Date / Time	Group-A(CSE, C	ME & AI&DS)	Group-b (22	00 00 03 30PM	
	10.00 - 11.30AM	02.00 - 03.30PM	10.00 - 11.30AM	02.00	
	10.00 THE	Environmental	м-П	EITK	
13.07.2023	M-II	Science	DS with C/	Indian	
14.07.2023	DS with C	Chemistry	Circuit Theory/ Engg. Mechanics	Constituition	
15 07 2022	BEEC		Engg. Physics/ App. Physics	English	

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Note: Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

EEE

Gaty fraindil -

H&S

ACOE

Principal/COE

Copy to HODs:

CSE

ECE

IT.

2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

- Examination procedures
- Processes integrating IT
- Continuous internal assessment system

IV. SCHEME OF INSRTUCTION AND EXAMINATION

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employability Enhancement Courses. Employability Enhancement Courses include Project Work, Seminar, Professional Practices, Case Study and Industrial/Practical Training.

Appearance in End Semester Examination is mandatory for all Courses including theory, laboratory and project work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE). For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini & Major Projects, Field works & Internships, Technical Seminars & Paper writing etc. are 16.

S.No	Category of course	Continuous Assessments	End-Semester Examinations
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks
2.	Laboratory Courses	40 Marks	60 Marks
3.	Project	80 Marks	120 Marks

Each course shall be evaluated for a maximum of 100 marks as shown below:

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization, design thinking, internship, industry oriented mini-project, project stage-I and project stage-II Courses shall be evaluated for 100 marks each.

Theory Courses :

- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Internal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Continuous Internal Evaluation (CIE - 40 M):

 Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M), Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination (25 M):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The optional third sessional/Internal exam with full syllabus will be conducted. Average of best two sessional Exams shall be calculated and used as the final sessional marks for each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:
 - PART-A: 5 X 2 M = 10 M

All questions are compulsory.

PART-B: 3 X 5 M = 15 M

In Part-B three out of four questions have to be answered.

Class Assessment (CA -5M):

The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

Activity	Max.Marks (5M)
Technical Participations in inter College Competitions / Paper Presentations / Publications	5 Per Activity
Certification Courses (SWAYAM,NPTEL or Relevant online Recommended Course etc)	5 Per Activity
Course Project/Project Based Learning (PBL) (Group of three Students)	5 Per Activity
Viva (Conducted by Course Committee)	5

he valuation and verification of answer scripts of CIE shall be completed within a week after the conduct of the examination.

Semester End Examination (SEE - 60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration.
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

PART-A: 5 X 2 M = 10 M

- a. There shall be one question from each unit.
- b. All questions are compulsory.

PART-B: 5 X 10 M = 50 M

- There shall be one question from each unit with internal choice i.e., 'either' 'or' choice.
- b. The student shall answer one question from each UNIT.
- c. There could be a maximum of two sub divisions in a question i.e., (a) and/or (b).

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

- i) 60 Marks are allocated for quality of the project work covering
 - a. Literature-review, -10
 - b. Innovation / Originality 10
 - c. Methodology 20
 - Relevance / Practical application which will be awarded jointly by the internal and external examiners. 20
- 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

1	÷	
٦	a. 1	
	*	
		-

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

STLW/EB/Circular/2022-23/128

Date: 04.07.2023

Satyp traind

B.E-Internal Examination- I Circular

- 1. The I Internal Examinations for B.E- II Sem are being scheduled from 13th - 15th July, 2023.
- 2. The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before 10th July, 2023 before 03.30PM without fail.
- 3. The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -

Part-A - 5*2M =10M (All questions are compulsory) Part-B - 3*5M=15M (3 out of 4 have to be answered)

- 4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
- 5. The HODs are requested to verify the submission of all subject Question papers on time.
- 6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before 10th July, 2023 without fail.

Jused

04.07.2023

B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

			B (EEE	ECE & IT)
	Group-A(CSE, C	ME & AI&DS)	Group-b (22	02.00 - 03.30PM
Date / Time	10.00 - 11.30AM	02.00 - 03.30PM	10.00 - 11.30AM	02.00
	10.00 THE	Environmental	м-П	EITK
13.07.2023	M-II	Science	DS with C/	Indian
14.07.2023	14.07.2023 DS with C		Circuit Theory/ Engg. Mechanics	Constituition
15 07 2022	BEEC		Engg. Physics/ App. Physics	English

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Note: Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

EEE

Gaty fraindil -

H&S

ACOE

Principal/COE

Copy to HODs:

CSE

ECE

IT.

IV. SCHEME OF INSRTUCTION AND EXAMINATION

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employabilit Enhancement Courses. Employability Enhancement Courses include Project Work, Seminar Professional Practices, Case Study and Industrial/Practical Training.

Appearance in End Semester Examination is mandatory for all Courses including theory, laboratory and project work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE). For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini & Major Projects, Field works & Internships, Technical Seminars & Paper writing etc. are 16.

S.No	Category of course	Continuous Assessments	End-Semester Examinations		
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks		
2.	Laboratory Courses	40 Marks	60 Marks		
3.	Project	80 Marks	120 Marks		

Each course shall be evaluated for a maximum of 100 marks as shown below:

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization, design thinking, internship, industry oriented mini-project, project stage-I and project stage-II Courses shall be evaluated for 100 marks each.

Theory Courses :

- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Internal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Continuous Internal Evaluation (CIE - 40 M):

 Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M), Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination (25 M):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The
 optional third sessional/Internal exam with full syllabus will be conducted. Average of
 best two sessional Exams shall be calculated and used as the final sessional marks for
 each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:

PART-A: 5 X 2 M = 10 M

All questions are compulsory.

PART-B: 3 X 5 M = 15 M

In Part-B three out of four questions have to be answered.

Class Assessment (CA -5M):

The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

A - electer	Max.Marks (5M)
Technical Participations in inter College Competitions / Paper Presentations / Publications	5 Per Activity
ertification Courses (SWAYAM,NPTEL or Relevant nline Recommended Course etc)	5 Per Activity
Course Project/Project Based Learning (PBL) (Group of three Students)	5 Per Activity
Viva (Conducted by Course Committee)	5

he valuation and verification of answer scripts of CIE shall be completed within a week after the conduct of the examination.

Semester End Examination (SEE - 60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration.
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

PART-A: 5 X 2 M = 10 M

- a. There shall be one question from each unit.
- b. All questions are compulsory.

PART-B: 5 X 10 M = 50 M

- a. There shall be one question from each unit with internal choice i.e., 'either' 'or' choice.
- b. The student shall answer one question from each UNIT.
- c. There could be a maximum of two sub divisions in a question i.e., (a) and/or (b).

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

- 60 Marks are allocated for quality of the project work covering
 - a. Literature-review, -10
 - b. Innovation / Originality 10
 - c. Methodology 20
 - Relevance / Practical application which will be awarded jointly by the internal and external examiners. - 20
- 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

IX. Improvement of Overall Score

- A Candidate who wishes to improve her Overall score may do so within one academic year immediately after having passed all the examinations of the B.E. Degree program, by reappearing in not more than two semester (all subjects pertaining to the semester taken together) examinations.
- For the award of the Overall score, she will have the benefit of the higher of the two aggregates of marks/grade secured in the corresponding semester(s).

X. General Rules of Examination

- Procedures and the conduction of Exams will be as per Osmania University.
- The three mid exams in a semester and the average marks of best two exams will be taken as final CIE marks.
- The CIE marks will be divided as 25M-Exam, 5M-Assignment, 5M-Quiz, 5M-CA. In Mid exam, the Part-A all questions to be answered and choices will be given in Part-B.
- The Practical Examination marks distribution is followed as 40M (Internal), 60M (External) and there will be three internal Exams in a semester.
- The distribution of Lab internal Marks as 10M (Continuous Assessment), 10M (Record), 20M (Exam (10M Write up+10M for viva)).
- The grading and Malpractice system will be same as Osmania University.
- The procedure for detention and rejoining of students can be changed by case to case by approval of Academic Council/ CAS.
- The rankers of each department will be given upto Top 10 ranks.
- The attendance system as per Osmania University.

XL TRANSITORY REGULATIONS:

- Whenever a Course or Scheme of Instruction is revised/modified in a particular semester/year, two more examinations immediately following thereafter shall be conducted according to the old syllabus/regulations, provided the content in the course has changed more than 40%.
- Candidates not appearing at the examinations or failing in them shall take the examination subsequently according to the revised syllabus and regulations.

XII. RANGE OF CREDITS

Credit system will be implemented in each semester. The credit hours for each theory course, laboratory sessions, Skill Development Courses and project work are clearly mentioned in the scheme of instruction.

20

Stanley College of Engineering & Technology for Women (AUTONOMOUS) (Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

English Lab SHS911EG

Continuous Evaluation Sheet

Academic Year 2022-23 Semester - 11

Branch / Section: _____

Name: Bogg asapu Siva Kecthana

Roll Number: 166622731011

Date.	Speaking Activity	Criteria For	Evaluation		A AND A ADDRESS	
Date		5M	SM	Total 10M	Remarks / Action Taken	
1423	JAM / Picture Perception	Spontaneity/ Perception	Confidence/ Creativity		Evenine need to children her views more.	
Blat		4	4	18		
2	Group Discussion	Subject	B language		buildent work wat on.	
		5	5	10	Supposed to pint with debi	
3	Debate	Subject	B language	1.1	loood subject knowledge	
		5	+	19	and echaltals	
4	Role Play	Spontaneity	Fluency		budlent deamondk	
		5	14	10		

SL No./	Listening &	Criteria For	Evaluation		The second second second second
Date	Pronunciation Activity	SM	SM	Total 10M	Remarks / Action Takon
5	Phonetics .	Pronunciation	Confidence		Impecable pronunciation
	(Vowel sounds)	<	5	10	
6	Phonetics	Pronunciation	Confidence	1	hours afforts
	(Consonant sounds)	A	5	4	
7	Stress	Understand	Application	10	This de beffes.
	1200-00	4	4	18	at the second se
1	Intenation	Pitch	Application		hood pitch any
	Addression	5	4	1	di chives
0	Tistening for	understand	Analysis	See.	Imperable SEALS
	Comprehension	5	5	10	

ET No.I		Criteria F	or Evaluation	The second secon	
Date	Conversation Skills	5M	5M	Total 10M	Remarks / Action Taken
10	Introducing Onesell/ Asking & Giving information/ Response/	Fluency	Accuracy	10	Consistent .
		5	5	10	

Remarks:

Faculty signature

,

5

5

5

5

۶

Stanley College of Engineering & Technology for Women (AUTONOMOUS) (Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

English Lab SHS911EG

Continuous Evaluation Sheet

Branch / Section: _____CSE - _____

Academic Year 2022-23 Semester -1 Name: ATVAGANA SAMEEKSHA

Roll Number: 160622732129

SL No.J	Speaking Activity	Criteria For	Evaluation			
Date		5M	534	Total 16M	Remarks / Action Taken	
<i>£</i>	JAM / Picture	Spontaneity/ Perception	Confidence/ Creativity			
	reception	3	H	7	an improve	
2.:	Group Discussion	Subject	B language			
		4	- 44	8	Bury - more content.	
3	Debate	Subject	B longuage			
		4	5	-)	Partis mater in related	
4	Role Play	Spuntaneity	Fluency			
	Access of the Ac	3	3	6	and acting the Ra	

SL No/	Listening &	Criteria For	Evaluation	1	Domester / Action Taken
Date	Pronanciation Activity	5M	5M	Total 10M	Remarks / Action Tanco
5	Phonetics	Pronunciation	Confidence	1000	Impressed
	(Vowel sounds)	5	5	10	E.
6	Phonetics	Pronunciation	Confidence		and the stand
	(Consonant sounds)	5	4	9	27 HE THE CONSIDER T
2	Stress	Understand	Application		
	120.00	5	4	19	George
87	Intenation	Pitch	Application		and the second sec
	Elitivestroa	9	-	10	Encellist Cospiebonta Schulde
0	Listening for	understand	Amiysia		11
84 <u></u>	Comprehension	4	5	9	Key good.

St. No./		Criteria F	or Evaluation	1	Remarks / Action Taken		
Date	Conversation Skills Activity	5M	SM	Total 10M			
10 Introducing Onesetif Asking & Giving information/ Request & Response/	Introducing Oneseil/ Asking & Giving	Fluency	Accuracy				
	information/ Request & Response/	4	4	8	Ingine you speaking		

Remarks:

Brupsper Faculty signature

						040			10000	0-
		MidI	MJI	AVE	6	A	CA	T	Lab.	. Yu
E 40	11206 21735 040	07	TH	12	35	4	4	24	33	
41	1606 21 735 041	08	21	145	4	4	4	21	28	
42	1606 21 735042	16	23	19.5	5	5	5	35	38	
(43	1506 21 735043	12	23	17.5	45	3	4	29	28	1
44	160621735044	21	21	21.5	5	4	4	35	36	
45 -	1606-21735045	21	18	19.5	5	4-	4	33	37	
45 *	160821735046	13	16	14.5	3.5	35	.4	26	30	
47	1606 21 735 047	17	23	20	5	5'	3	33	36	
48	160621735048	19	16	17.5	4.5	8.5	1 FF	30	33	
49	160621735049	14		12.5	2.75	3	4	22	30	
50	60621735050	21	24	22.4	5	5	5	31	37	
51	160621735051	2.0	21	20.5	+	5	5	35	36	
52	160621735052	- 15	23	19	4.5	4	3	31	33	
51	160621735053	14	19	16.5	3.5	3.5	4	28	30	
54	60621735054	19	24	21.5	45	45	5	36	36	
-55	606 21 735 055	12	22	IT	4	5	5	31	36	
56	160621735056	119	21	20	4	4	H	32	32	
57	1606 21735057	07	19	13	35	3.5	3	23	36	
- 54	160621 735058	15	18	165	3.5	4	3	27	29	
39	1606 21735 059	10	12		4	4	3	22	30	
60	160621735060	17	20	18.5	4	5	5	33	32-	
61		- Internal			1.1.1	-				
62		And the second	-	- frage			-			
63	1 1 2 2			1.1.17	111		-	_		
64		1. 2.3.7	-	213	1.0142		-	2 U.		
65	the second se	-			-			And in case of the local division of the loc		

	MID-I		MID-II	
Total No. of Students:	60	60	60	1201
No. of Students Present	56	60	60	
No. of Students Absent	04 .	NII	NIL	
Faculty Name / Date:	J-P.Bau	28/11	J.F.Framed	124
Faculty Signature/Date:		TEBLER		72.8/11
HoD Signature/Date:	Draud	Hold Int	marchine	7122

Constant in the

STANLEY	
Dept. : HES Sub: Engi. Physics Sub: Engi. Physics SBS 901 PH	

COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

10.00 of high statich in Add. A.C. within "A" (domain) CAR MILITER LAD + social distances and may dealer \$15 Trained to: Co

Yr/Sem: IV Sem-II Section: ECE - A Date of Exam: 07 06 22 Date of Exam:

SL No	ROLL NO	Mid 1 (25)	Mid 11 /251	Avg. (25)	Ouir (5)	Assign	CA (5)	40	LAB 40
		14.51	finnes in factor	14.71	2012 151	inchit	1.0	1000	
1	1606 21 735001	18	185	18.5	4.5	4	4	31	30
2	160621 735002	17	22-	19.5	5	5	5	35	36
3	606 21 735003	14-	16	15	4.0	5	5	29	36
4	1606 21 735 004	16	21	18.5	4.5	4.5	5	33	32-
5	1606 21 735 005	05	18	11.5	3.15	4.25	4	34	28
6	1606 21 735 006	10	24	17	3.4	4	5	30	32
7.	1606 21 735 007	06	19	12.5	3.15	4.25	4	25	30
8	160621735008	17	24	20.5	4.5	5	5	35	35
9	606 21 735 009	OT	19	13	3.5	5	4	26	32
10	160621 735010	18	23	20.5	5	4.5	3	33	33
- 11	1606 21 735 011	21	24	22.5	5	5	5	38	36
12	1606 21 735 012	11	14	12.5	3.25	5	4	25	30
13	1606 21 735 013	06	20	13	3	4	4	24	2.8
34	160621735014	12	17	14.5	35	5	4	27	3
15	160621735015	11	22	165	1+	4.5	4	29	00
- 16	160621735016	05	21	14.5	4.5	2	14	28	30
17	1606 21735 017	20	23	21.5	2	5	2	51	26
18	160621735018	18	23	20.5	4	14	15	35	32
19	160621735019	10	11	10.5	2.15	3.25	2	24	22
20	1606 21 735020	15	9	117	5.5	4:5	2	20	31
21	160621 735021	18	T	17.5	2	2	2	20	20
22	160621735022	10	17	1143	4.5	2	2	47	30
23	60621735023	06	19	12.5	5.0	4 4	1	29	22
24	160621735024	11	16	16.3	4.2	5.15	TE	30	22
25	16062 735025	12	20	16	17	12	E	20	30
26	16062 735026	19	24	121.5	1 4	5	5	ZI	20
27	1606 21 735027	16	22	19	++2	2	1	30	20
28	160621735028	13	21	117	2	T	17	27	20
29	160621735029	11	10	10.	3.3	42	1 1	42	20
30	1606 21 735030	10	18	14		3.2		21	20
31	160621735031	09	10	4.5	2.1	2 4 2	1 1	24	22
32	1606 21 735032	21	24	22.	2 2	2	T	121	- 20
33	160621735033	19	21	20	143	2	2	20	20
34	160621735034	18	24	121		2 11 11	2	200	30
35	1606 21735035	16		16.	2 2 1	2 42	4	100	20
36	1606 21 735 036	10	23	16.	5 4	4.5	- #	4	20
37	1606 21 735 037	10	21	15	2 4	2	13	30	
38	1606 21 735038	13	2.2	17.	5	2	2	23	2 20
39	160621735039	II	18	14	514.1	5 4.2	2 4	2.8	1200

(All elliptible UG courses are accredited by NBA & NAAC with 'A' private) Amilated to Clemenia (Aniversity and Approved by ArCTE

30.06.2022

B.E - II Sem - II Internal Examinations for the A.Y-2021-2022

Barry Theory	Group-A(CSE, C	ME & AI&DS)	Group-B (EEE, ECE & IT)			
Date / Hitte	09.30 - 11.00AM	02.00 - 03.30PM	09.30 - 11.00AM	02.00 - 03.30PM		
16.07.2022	М -Ш	Environmental Science	м-ш	EITK		
18.07.2022	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition		
19.07.2022	BEEC	an plant	English	Engg. Physics/ App. Physics/		

COE

Copy to HODs:

ind! Satro

Principal

27.12.2022

B.E - I Sem - I Internal Examinations for the A.Y-2022-2023

	Group-A(CSE	CME & AI&DS)	Group-B (EEE, ECE & IT)				
Date / Time	10.00 - 11.30AM	02.30 - 04.00PM	10.00 - 11.30AM	02.30 - 04.00PM			
05.01.2023	English	PPS	Chemistry	PPS			
06.01.2023	M -I	EITK	M-I	Environmental Science			
07.01.2023	Physics	Indian Constituition	FEE/BEEC				

Note:

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Quiz(Q) - FN-11.05-11.15AM -/ AN-02.50-3.00PM

Copy to HODs:

rificipal 27/142022

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN (AUTONOMOUS) (Approved by AICTE & Affiliated by Osmania University) Accredited by NBA-UG (CSE, ECE, EEE & IT) & NAAC with 'A' Grade

STLW/EB/Circular/2022-23/89

Date: 14.02.23

B.E I Semester Internal Examination -II

All the B.E I semester students are informed that, II - Internal examinations are scheduled from $02^{nd} - 04^{th}$ March, 2023. The detailed time table will be displayed on notice boards. Exams are conducted Offline and No Re-test will be conducted for the Absentee students.

IMPORTANT NOTE:

Students are strictly instructed to clear the college fee dues (if any) in order to get the Hall tickets for Mid-II examinations.

CSE

Copy to HOD's Display on NB's

ECE

Library

AO/AR

EEE

Accounts

Chapel Road, Abids, Hyderabad-500 001.Telangana, India.Ph:040-23234880, 23244880 www.stanley.edu.in

XX

ADCE

14.02.23

B.E - I Sem - II Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSI	C, CME & AI&DS)	Group-B (EEE, ECE & IT)		
	10.30 - 12.00PM	02.30 - 04.00PM	10.30 - 12.00PM	02.30 - 04.00PM	
02.03.23	English	PPS	Chemistry	PPS	
03.03.23	EITK	M -I	Environmental Science	M-I	
04.03.23	Physics	Indian Constituition	FEE/BEEC	THE REPORT NOT	

Note:

Internal Examination (IE) - FN -10.30-11.45AM / AN-02.30 - 03.45PM Quiz(Q) - FN-11.45-12.00PM -/ AN-03.45-4.00PM

A

Copy to HODs:

																			A	-bbl	ied	Phy	sics	La
				S	tane	ly C	olle	ge o	f En	gine	erir	12 &	Tec	hno	logy	for	Wo	men		11	200	2.0	PH	
									We	ekly	Eval	ration	Shee	t.	63					51	35 0	112	1.11	
			A	cadem	tic Yes	r 2	02	2 -	- 2.	X	- rail	CI	Marce	T			Re I		Δ					
-			1.42	and the second	1000	1			de	2		SE	-M	11-			EC		n					
Vo. Exp. No.	07	Week	2023	14	06/2	02.3	21	06 2	023	2.8	6 20	2.3	5	1 20	13	191	07/20	23	091	08 20	023	23	8 23	2
Exp Name	S.C	· LA	SEK	OP	cal 7	ibre	Sol	al Ce	11	Rn	Wiek 4	inde	Pha	Week 5	1	Fri	Week 6		They	minte	4	Revi	blon	tall
127 401	Acc	210	Viva	Rec	Enz	Viva	Rec	Exe	Viva	Rec	Exe	Vita	Res	fixe:	Vina	Rei	Exe	Nive .	Rec	Exe	Vine	Rec	tise	Viva
727001	5	DJE C	MI	S	5	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
727003	5	26	E	5	2	2	5	5	5	AB	SE.	NT	5	5	5	5	5	4	5	4	5	5	5	4
737 004	AR	SEN	T	AO	20.	17	5	5	5	5	5	5	5	5	4	5	5	4	5	5	5	5	5	5
737005	5	E	5	6	5	1	5	5	5	5	5	5	5	5	4	5	4	4	5	5	5	5	5	5
737 006	AR	PN	T	40	CE	NT	5	5	5	5	5	5	5	5	5	5	5	5	1 1	D SI	NI	5	5	5
737007	5	4	4	5	5	LL.	5	5	5	5	5	5	AB	SE	NT	AB	36	NI I	n B	St	N	5	200	4
131000	5	5	14	E	5	1	AO	5	IT	5	5	5	5	5	5	5	5	T	5	5	5	0	2	#
737009	5	5	5	5	5	T	no	E.	5	56	5	5	5	5	2	5	5	T	5	2	+	2	2	D
737010	AB .	EN	T	5	5	5	5	5	5	AR	C F	NT	5	2	T	5	TE	TE	5	5	0	AR	SE	NO
737011	5	5	5	5	5	5	5	5	5	E	5	5	5	5	5	0	5	4	5	5	5	5	5	E
731012-	5	5	5	AR	SE	NT	5	6	4	2	5	C	2	5	4	2	4	4	E	E	5	5	5	5
131013	AB	EN	T	AR	SE	NT	5	5	4	2 12	5	5	5	5	5	5	5	4	5	5	14	5	5	5
737014	5	5	5	5	5	4	5	5	5	5	5	5	5	5	5	AR	SE	NT	6	5	5	5	H	4
737015	5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	5	5	5	5	5	H	5	5	4
737016	AB	SEN	4T	5	5	4	5	5	4	5	5	5	5	5	5	5	H	4	5	5	5	5	5	5
137017	AB	SE	NT	AB	SE	NT	AB	Se	NT	AB	SE	NT	5	5	5	5	4	5	5	5	5	5	5	14
137018	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
137 019	5	5	4	5	5	5	5	5	5	5	5	5	5	5	5	5	4	4	5	5	5	5	5	H
137 02.0	AB	SE	NT	AB	SE.	NT	5	5	4	AB	se	NT	5	5	5	AE	SSE	NT	5	5	5	5	5	5
T37021	AB	SE	NT	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	A	BSE	ENT	5	5	5
737022	AB	SE	NT	5	5	4-	5	5	4	5	5	5	5	5	4	AG	3 5	EN	TE	5	5	5	5	F
737023	5	5	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
73702.4	5	5	5	5	5	4	AB	SE	NT	5	5	5	AI	BS	EN	T 5	5	5	A	BSI	ENT	5	5	5
737025	5	5	5	5	5	5	5	5	5	AB	SE	NT	5	5	5	5	- 5	5	5	5	5	5	5	F

The following students of IT-A, sem 2, Academic year 2022-2023 have successfully completed "Project Based Learning System" named different projects/working models in Applied Physics under the guidance of J.P.Pramod.

Laser Home Security System 5

S.NO	Roll Number	Name	Signature
1	160622737002	A. Lahari	daharit.
2	160622737015	D. Deepika	10 Deepika
3	160622737035	K. Krushna Sri	Knushra Sri
4	160622737057	S.Harshitha	Harshithe

Application of Solar Energy - cycle

S.NO	Roll Number	Name	Signature
1	160622737001	A. Neelu	Awres?
2	160622737038	K. Akhila	ANA STA
3	160622737058	Syyeda Uzma	Carmette
4	160622737059	T. Kruthika	T. Kuthika

Servo Distance Indicator using Arduino 6

5.NO	Roll Number	Name	Signature
1	160622737009	R Vala Dia di	Signature
2	160622737031	b. veda Bharati	Vecal
3	160622737022	K. Varshini	Vaisnum
	10022757055	K. Vaishnavi	Vaishing

Sensor Laser - Security

CNIC

S.NO	Roll Number	Namo	Signature				
1	160622737003	A. Pooiitha	Di Pontitho				
2	160622737004	A. Kruthika	A krithita				
3	160622737021	G. Manaswi	abrahi				
4	160622737024	G. Kushika	KUNDEL				

Heart rate measurement using Arduino 6

S.NO	Roll Number	Name	Signature
1	160622737011	B. Keerthana	auticaus
2	160622737012	B. Vaishnavi	Kussa Voir nem
3	160622737014	Ch. Nikitha	Nikithy
4	160622737028	J. Lasya	lasyng

Laser Security Alarm System 9

S.NO	Roll Number	Name	Signature
1	160622737005	Asfiya Kausar	All
2	160622737008	B. Brinda	Biblinda
3	160622737019	G. Sneha	South .
4	160622737048	P. Ramya Sri	Phylo
5	160622737063	Y. Shiva Pranathi	Y-Shiva pranans

1

Surveillance Car using ESP 32 Camera

S.NO	Roll Number	Name	Signature
1	160622737006	A. Namratha Rao	anel
2	160622737026	H. Rishika	H-RESLIKE
3	160622737036	K. Sony	CHK.
4	160622737039	M. Rohini	Robert
5	160622737043	N. Sindhu	Smithudugh
6	160622737047	P. Kusuma	Hunna

Powered Night guard light using Arduino

S.NO	Roll Number	Name	Signature
1	160622737007	Ayesha Siddiqa	Ayesta
2	160622737017	Fareeha Ifthekhar	Jour
3	160622737061	T. Harshitha	sriharshitha
4	160622737065	Zumar Sania	Enne

Laser Light Alarm Security System &

S.NO	Roll Number	Name	Signature
1	160622737010	Vaishnavi B	B vaishnavi
2	160622737016	E. Kalyani	Kalyah?
3	160622737022	G. Gangothri	6 Gangothsi
4	160622737023	G. Mamatha	quanatha.

ECG Monitoring 9

S.NO	Roll Number	Name	Signature
1	160622737018	G. Manogna	G. Manuf
2	160622737030	K. Kavya	By
3	160622737044	N. Pooja Reddy	N. Toufa
4	160622737045	N. Prajwali	Prajual

Smart Bridge - Automatic Height Increase when flooding 9

S.NO	Roll Number	Name	Signature
1	160622737032	Varshini Reddy	Variation
2	160622737037	K. Yuktha	K Yuktha
3	160622737060	T. Bharani	Euserus

Laser Light Show 5

S.NO	Roll Number	Name	Signature
1	160622737013	Ch. Vaishnavi	ch.Vaichnavi
2	160622737020	G. Manasa	G-Manula
3	160622737027	Madhumitha	Modhumitha
4	160622737029	J. Pooja	Poolo

Obstacle avoiding Robot using Bluetooth control and Arduino

S.NO	Roll Number	Name	Signature
1	160622737050	P. Lavanya	P-Lavany4
2	160622737051	R. Swarnalatha	R.Swandotte.
3	160622737052	R. Ujwalitha	kywalitha
4	160622737053	R. Vaishnavi	Ryaishnavi

Laser Security Alarm System 🗧

S NO	Roll Number	Name	Signature
1	160622737046	P. Sanjana	Janjain
2	160622737056	Sriya Gogikar	5190
3	160622737062	Brindha Hasini	Hudhe

Electromagnetic Induction 5

S.NO	Roll Number	Name	C' 1
1	160622737034	Khuthoia Isaan	Signature
2	160622737049	Privanka R	Dento
3	160622737054	Saniva Afroan	Care
4	160622737055	Sidra Noorin	Silva :

Rain detector using sensor

S.NO	Roll Number	Name	Signature		
1	160622737025	G. Harika	G.Harika.		
2	160622737040	M. Srija	" PITERN		
3	160622737041	M. Mounika	M. MOUDFlee		
4	160622737042	M. Teena	MiteuroPastanthi		

9

J: P: Pramod

BY. V. Anuradha HOD (H&S)

AY: 2022-23, SEM-II, IT-A

"ARDUINO-POWERED NIGHT GUARD LIGHT"

UNDER PROJECT BASED LEARNING SYSTEM

Estd. 2008

B.E Sem Co	nsolidated Marks List for th	e Academaic Year 2022 - 2023
subject : Applied P	hysics Branch :_	CSE-A
Date (Mid - I): 0701	2.02.3 Date (Mid	-II): 04/03/2023

SI,		Mid - I	Mid - II	Avg	Q	A	CA	Total	Lab
No.	Roll No	25	25	25	5	5	5	40	Internal 40
1	1606 02 722 001	TO	09	9.5	3	5	5	22.5	33
2	100 22 133 001	23	24.5	24	5	5	6	39	28
3	600 22 733 003	05	12	8.5	3	5	5	21.5	30
4	1606 22 723 004	08	11	9.5	14	5	6	22.5	23
5	1606 22 733 005	24	21	22.5	L	5	6	ZUC	29
6	1606 22 723 006	16	12	14	2.5	5	6	27.5	20
7	1606 02 733 007	13	10	11.5	3	5	5	24.5	30
8	1606 22 723 008	23	21	22	4.5	E	6	345	36
9	1606 22 733 009	21	24	22.5	5	5	6	21.5	70
10	1606 22 723 010	TH	21	17.5	3.0	5	5	21	30
11	1606 22 733 011	15	21	18	4	5	5	32	25
12	160622 733 012	17	16	16.5	3.5	5	5	30.	24
13	1606 22 733 013	21	10	15.5	4	5	5	29.5	70
14	1606 22 733 014	13	16	TU.C	4-	5	5	28.5	32
15	1606 22 733 015		17	14	4	5	5	28	35
16	1606 22 733 016	211	18	2.0	4	5	5	34	37
17	1606 22 733 017	23	211.5	24	5	5	5	39	39
18	1606 22 733 018	IT	17	17	4	5	5	31	34
19	1626 22 733 019	11	10	10.5	3	5	5	23.5	34
20	1606 22 733 020	12	8	10	3.5	5	5	23.5	36
21	1606 22 733 021	18	18	18	3.5	5	5	31.5	37
22	1606 22 733 022	II	9	10	3	5	5	23	32
23	1606 22 733 023	244	24.42	24.5	5	5	5	39.5	39
24	1606 22 733 024	15	16	15.5	3.5	5	5	29	32
25	1606 22 733 025	23	22.	22.5	4.5	5	5	37.	38
26	1606 22 733 026	06	05	5.5	3.5	5	5	19	34
27	160622 733 027	21	20	20.5	4.5	5	5	35	38
28	60622 733 028	18	15	16.5	3.5	5	5	30.	35
29	160622 733 029	24	23	23.5	5	5	5	38:5	35
.30	1606 22 733 030	22	12	17	4.5	5	5	31.5	36
31	1606 22 733 031	15	16	15.5	4	5	5	29.5	36
32	1606 22 733 032	23	8	20.5	4.5	5	5	35	38
33	1606 22 733 033	AIH	14	14	4	5	5	28	32
34	1606 22 733 034	06	2	9	3.5	5	5	22.5	30
35	1606 22 733 035	18	13	15.5	4	5	5	29.5	30

SI				-	Ta	4	CA	Total	Lab
No.			Ind. II	Avg	Q	100	1.2		Internal
210,	Dattas	Mid - I	Mid-I		in			40	40
-	Roll No			25	5	5	3	26	36
36	1606 000	25	25	02	4	5	5	50	72
37	1000 22733 036	23	21	100	2.5	5	5	26	27
38	160622 733 027	17	12	12.5	22	5	5	38.5	5
30	606 22 722	D	0.11	24	42	5	5	39	38
10	606 22 722 038	24	24	24	5		6	33.5	32
40	606 22 33 039	23	2411	19.5	4	2	6	30.5	33
41	1606 22 133 040	18	21	In	4.5	5	5	24.5	30
42	1600 22 733 041	18	14	16-	4	5	5	20.2	31
43	1000 22 733 011	17	12	12:5	12	5	5	37	
44	100622 733 042	IP	014	24	2	6	5	28	34
45	606 22 723 043	24	24	14	4	-2	6	32.5	31
15	606 22 722 044	12-	16	17.5	5	2	E	24.5	30
40	606 22 722 045	21	14	-11-	3.5	2	2	27.5	31
47	1606 22 133 046	10	12_	11-	3.5	5	5	22	32
48	1601 22 733 047	13	15	14	E	5	5	30	20
49	16010 22 733 048	19	17	18	2	5	5	38	20
50	1006 22 733 149		0111/1-	23	5		5	27.5	30
51	1006 22 733 050	14	ATT P	14.5	3	2	6	28.	32
52	1606 22 733 051	118	11	13.5	4.5	5	2	20.0	38
34	606 22 722	4	13	131	5	5	5	20.2	ZO
53	606 22 722 052	24	23	23.5	7.0	5	5	22.5	76
54	1644 22 133 053	09	09	9	2.5	6	5	27.5	30
55	1601 22 133 054	12	15	13.5	4	-2	6	35	33
56	1000 22 733 055	20	20	2.0	5	2	6	25	31
57	1606 22 733 056	27	10	20.5	4.5	5	2	250	31
51	606 22 733 057	45	10	12-	3.5	5	5	222	76
58	606 22 722 050	12	14	10.0	4.5	5	5	34.	22
59	1606 22 722 058	21	18	17.5	IL C	5	5	31	55
60	1606 22 733 059	16	IT	16.5	4.2	5	5	38	36
61	1600 22 133 060	22	24	23	5	2	6	29.0	32
62	1000 22 733 061	17	14	15.5	4	5	2	295	29
02	606 22 733 062	2114	2111	24.5	5	5	5	202	35
63	1606 22 733 06Z	IC	20	19	H	5	5	33	22
64	10003	10	40	11-	-		I STAT	1-2-2-	
65	-112	100	1 miles	-	-	alu.	Real	C.C.S.	IN IS COL
-									

Total No. of Students:	67
No. of Students present:	03
no. or oradents present.	63
No. of Students absent:	NIL
Faculty Name / Date:	11 223
Faculty Signature / Date:	Mr. J.P. Pranod
HOD Signature / Date:	Brancal,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dr.V. Anuradha

HES Applied Physics

F

202	2-23	
Sem :	Sem-I	
te of Exam:	11122	
	1100	

	A	
	- IE-A	
	CSE	
		_
-	112 23	2

Date of Lasm _ 43 23

28	HOLE NO		MiDi									NO 8										
		Qi	- 42	q	1 01	05	0	To	Ta	Ta	. Lawrence		a.I	140	01	04	03	QE	a	q		TOTAL
1	3001	2	1	0	1		1	-	9	u.	TOTAL		4	3	0	T	T	2	2	1	T	9
ž.	3002	2	2	à	10	1	a	-	3		10		2	2 A	a	3	9	5	5		4.	\$ 24.5
	3003	2			10	A	1	4	15	4	23		2	ol (×	1	Ĩ	0	4	Γ	3	12
4	3004	2	2	D		1	10	-	-	-	5		4	+	-		a	ĩ	5	1	1	11
5	3005	2	2	à	15	1	-3	-		-	8	s			200		2	5	5		1	24
	3006	2	12	0	20	2	-	15	5	4	24		2 6	2 3	20	* 9	-	4	2	10		12
7	30DF	2	2	12	4 AX	13	Te	5	-	2	16			*	+	-		1	5	1	1	10
	3008	2	2	10	3	2	4	-	-	3	13		Ì	2				5	5		4	21
9	3009	2	2		2	2	4	5	-	4	23	1	0		10	1	2 1	5	5		5	24
20	3010	2	a	2	×	X	14	12	4	-	21	100	2 8	2 2	2 !	0	x n e		5		5	21
11	3011	2	2	3	-	-	4	-	-	4	14	100	0		20	00	1	针	5		ī	21
12	3012	2	2	13	-	1	15	-	4	8	IS	19.0	0	20	20	0		2	1	3	1	16
13	3013	2	2	12	2	1		5	3	5	17	100	20	4	10	00			+	Ĩ	1	10
14	3014	2	2	a	×	-	4	4	5		21	H	0	-	0	0	10	+	5	i		16
15	3015	0	10	-	+	2	4	4	1	4	13	1	20	4	0	1	0	2 4	5	1	5	17
36	3016	2	3	1	5	×	4	11	-	d.	1	0 0	2	10	0	0	UN T	5	1	5	5	18
17	3017	2	2	2	2	3	3.5	2	5	1	215	000	0	0	0	0	1	1	0	Ť		24.5
3.0	3018	2	2	2	1	d	4	2		4	23	0	a	0	0	0	12		2 1	át	1	17
19	3019	2	1	D	2	-	2	0	4	d	1+	ø	a	-	100	a	2	E	-	+	+	10
20	3020	2	2	0	0		4		-	1	12	0	0	1	Y	f	0	Ĩ	+		o	8
23	3021	2	2	2	2	1	u	+		2	10	0 0	9	3	i	2	U	1		T	4	18
22	3022	2	2	T	1			1	2	- N	18	1 I	0	0	0	i	P	9			3	9
23	3023	2	2	2	2	2		5	a E	T LLC	24.0	2	2	2	2	2	5	4	5	T	5	24.5
34	3024	2	2	1	I	1	-	5	1	2	15	00	2	1	T	Ĩ	3	L		0	2	16
25	3025	2	2	2	1	2	4	5	1	5	23	2	2	1	2	2		5	5 6	1	1	22
28	3026	1	1	1.0		I	4			-	6	Ť	1	1		1	3	T	1			5
11	3027	2	2	0	2	1	4	5	2	5	21	T	2	0	2	2	3		5	C	5 .	20
24	3028	2	2	D	2	1		4	5	2	18	T	1		1	1	4	5	00	2		15
25	3029	2	2	2	2	2	4	5		5	24	2	2	2	2	2	4	5	4			23
30	3030	2	2	2	D	2	4	5		5	22	2	2	1	2	2	3		T		1	2
11	3031	2	2	2	D	1	4	1		3	15	1	2	2	1	2	2	5	1	T	1	6
ni i	3032	2	2	2	2	1	4	5	-	5	23	2	2	1	2	1	3	1	2	5	-	8
13	3033	2	2	1	2	2	1	4	U		14	2	2	1	2	2	2	3			1	4
14	3034	2		1		1	2				6	1	2		a	1	3			3		12
15	3035	2	2	0	1	2	4	5		2	18		2		2	1	4	4		U	1	3

-			1.00	. 2.	19	3		1	10		165	_	_	_		_					
36	30.36	2	2	2	2	1	4	5	5		23	2	2	1	2	2	3	5		4	21
87	3037	2		1	1		4	2		3	13	1	2			2	2	5			12
38	3038	2	2	2	2	1.5	4.5	5		5	24	2	2	2	2	2	5	4		5	24
25	3039	2	2	T	1	2		5	5	5	23	2	2	2	2	2	5	5		4	24.5
40	3040	2	1	Ì	i	0	4	4	1	5	18	15	2	1.5	2	2	2	5		5	21
41	3041	2	2	2	1	T	4		3	4	18		2		2	2	3	5			14
42	3042	2	2	3	5	1	2.0		n	2.5	13		1	1	2	2	3	2	1		12
41	3043	2	3	0	2	2	4	e	<		24	2	2	1	2	2	5	5	5		24
44	3044	0	2	0	1ª	3	11		P	X	12		2	2	2	2		1	5	2	16
45	3045	2	2	2	5	D	11	e		u	21		2		2	2		5	1	3	14
48	3046	2	1	à	2	D	1	2	-	2	10	0	1	1	2	2	3	2	1		12
0	.3047	2	3	2	a	- N	1		0	0	12	0	2		2	2	2	3	C	4	15
48	3048	2	2	2	1	10	1 de	e	×	X	10	102	2	T	2	2	5		3	ŕ	17
43	3049	2	2	2	I	1	11	2	-	R	20	2	2	2	2	2	5	5	45	-	24.5
50	.3050	2	1	2	2	4	4	2	-	2	18	5	2	õ	3	2	3	-	12	2	11
51	3051	2	2	2	1	4	-	1.	-	2	10	0	15	0	1	IS	3	5	1	~	13
52	3052	2	2	2	3	10	14	7	-	2	14	T	0	15	3	9	5	5	-	10	23
-53	3053	Ĩ	1		1	K	4	2	1.	5	24	+	a	15	0	CA.	5	4	1	42	9
м	3054	2	2	2					17	2	9	+	a	-	1	9	2	n	9		15
55	3055	2	2	2			4		-	2	102	1	a	-	9	0	0	4	0	-	20
56	3056	2	2	5	10		1	2	-	2	20	00	0	1	ox o	0	2	2	-	E	20
37	3057	a			2	5	2	-	-	5	23	X	0	a	a	a	00	-	0	2	10
34	3058	2	2	2	0	X	1	1	1.	d	12	-	d		20	a	0	12	a	1	12
59	3059	2	2	D	0	t	11	100	17	4	21	1	2	0	a	a	0	45	30		10
60	3060	2	2	2	T		11.r	E C	2	5	16	-	20	0	20	d	3	0	3	-	1+
63	3061	2	2	2	2	1	4.5	2	h	45	20	9 0	ol	1.) a	+	1.5	2	2	14	2	24
62	3062	2	2	2	3	2	11.0	E	4	4	14	00	0	d a	0	d a	a	5	1		14
63	3063	2	1	1	1	0	4.7	2	n	5	24.5	20	20	2	2	2	5	5		4.9	24.5
64		1.00		1	-	0	-	2	4	4	18	a	x	1	H.	2	0	5	4	3	20
65						-	-	-	-	-	-	-	1		-	-	-		_		-
																			and the second se		

HOD Signature/Date

Gradet

Pr. V. Anuradha

4/14/3/23 Faculty Name & Signature J.P. Pramod

100 Service Brailt

Dr. V. Anuradha

TEAM MEMBERS

AY: 2022-23, Sem I, CSE-B

Solar Application Project

(Private University Autocomous Frankton) (All singlish: UG courses are accredited by NBA & NAAC with 'A' grade) Attivated to Comana University and Apendixed by AICTE

04.07.2023

B.E - II Sem - 1 Internal Examinations for the A.Y-2022-2023

	Group-A(CSE, C	ME & AL&DS)	Group-8 (EEE, ECE & IT)					
Dute / Time	10.00 - 11.30AM	02.00-03.30PM	19.00 - 11.30AM	02.00 - 03.30PM				
13.07.2023	м-ц	Environmental Science	M-II	ЕГТК				
14.07.2023	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition				
15.07.2023	BEEC		Engg. Physics/ App. Physics	English				

Note:

Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30 - 02.45PM Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

Catyphardel.

ACOE

Principal/COE

Ges to HOD:

ene effe fer has adore