Scheme of Instruction \& Detailed Syllabus

RULES AND REGULATIONS OF M.B.A. PROGRAMME

The Master of Business Administration (M.B.A.) is a Post-Graduate course offered as: Two-year i.e., four semesters Full time Day programme

1. Eligibility Conditions:

Admission eligibility for MBA course is as per TS Govt norms and Osmania University norms and Procedures.
2. Instruction Schedule:

Instruction will be provided as per the workload indicated in the structure, Rules and regulations of M.B.A. Program for all Theory, Practical and Project Work course requirements. The almanac will be as follows for all semesters

Duration of instruction: 14-16 Weeks/As per the University Norms, Preparation Holidays : 7-10 Days
3. Rules of Attendance:

Students must attend 75% of the total classes conducted for all the courses put together in a semester. Relaxation of 10% of attendance might be given to a student on medical grounds on the basis of a valid medical certificate and payment of condonation fee prescribed by the STLW.
4. Promotion Rules

A student will be promoted subject to the following rules:

1 Semester to II Semester:

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should be registered for the Semester End Exam for the I semester.

Scheme of Instruction \& Detailed Syllabus

II Semester to III Semester

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should have passed at least 50% of Theory courses of $1 \&$ II Semesters put together and should be registered for the Semester End Examination.

III Semester to IV Semester:

A student should put in a minimum of 75% of attendance in aggregate in all the courses put together of the Term (65% in the case of medical exemption) and should pass 50% of the theory coures of I, II and III semester put together and having registered for the Semester End Examination.

Choice of Elective:

Student has to opt for one elective - Finance / Marketing / Human Resource / Systems. There are four papers in each elective area two papers in III Semester and two papers in IV Semester.

For Example: A Student in Finance area should opt for two Finance papers only in III and two Elective papers in IV semester. Similarly for Marketing, HR and Systems Electives.

Cancellation of Admission

The admission of a candidate admitted to the MBA Course stands cancelled if: She does not put in at least 40% of attendance in Semester-L.
Or

She puts in at least 40% of attendance in Semester - I, but failed to register for 1* Semester Examinations

Ot

She fails to fulfill all the requirements for the award of the degree as specified, within 4 academic years from the time of admission in full time 2 year MBA program.

Mini Project:

The students should undertake the mini project by dominginternship for 2 weeks of duration or should be done in the department by dedicating 2hrs/week during II Semester of MBA Programme and they are required to submit a Mini Project Report and it will be evaluated for 100 marks and the same will be converted into equivalent grades as per the SCETW examination evaluation norms. (Carrying 2 credits).

Project Work:

Project Work should be carried out in the Final Year of MBA Programme i.e., III \& IV Semesters. The students are required to do project work in any area of Management under the active guidance of Intemal Faculty Menber assigned to the student. The Project work usually consists of selecting a Topic/Problem / Theme in any area of management, gather relevant data, analyze and interpret the same in a systematic and scientific manner Selecting a topic/problem/theme in any area of the management should be done in III semester and the synopsis should be presented in the III semester. To gather the data and to have field exposure a six weeks will be allocated between III and IV semester. The Project Work should be undertakenunder the supervision of the Faculty Member assigned for the purpose. The Project Report should be submitted to the STLW 30 days (one month) before commencement of Final Semester Examinations and Project work will be evaluated by internal and extemal examiners.

Comprehensive Viva Voce:

A Viva Voce examination will be conducted and evaluated by internal and external examiners. The scope of the questions will be from all the courses a student has studied for all the four semesters put together. The evaluation will be for 100 matks and the minimum to clear (pass) is 50%. The scored marks will be converted into equivalent grades.
5. Award of Grades For Seminars, Project Report and Viva Voce Examinations:

Seminars: Students are expected to give a presentation on a relevant topic of any Contemporary issues. Seminars are evaluated by internal faculty for 50 marks and converted into equivalent grades. Candidate should score atleast 50% of the marks or D grade.

Project Report and Comprehensive Viva Voce examination will be evaluated by internal and external Examiners for 100 marks, each candidate should score minimum of 50% and the same will be converted into equivalent grades.
6. Instructional Work Load For Theory, Practical Courses and 'Mentoring \& Project Work':

Each of the Theory Courses of the MBA Programme shall have instructional workload of 5 periods of 60 Minutes duration per week in addition to mentoring and project work as specified in the course curriculum. The Instructional workload for each of the Practical and Lab Courses shall be 4 Periods of 60 Minutes duration per week.
7. Evaluation System:

1. All the courses will have 60% marks for Semester End Examination(SEE) and 40\% marks for Continuous Intemal Evaluation(CIE)
2. Duration of the examination for all the courses is three hours each
3. A candidate shall be deemed to have fully passed the SEE, if she secures not less than minimum marks/grade (E) as prescribed below irrespective of marks obtained in CIE.

Minimum pass marks/grade in the Semester End Examinations Evaluation shall be:

Each Theory course	40%	E-Grade
Each Practical Course/mini project / Seminars/ Intemship / Project Work	50%	D-Grade

4. A course that has sessional /CIE marks but no Semester End Examination as per scheme is treated as Pass if she secures 50% (E Grade) of sessional/CIE marks
5. In case of hearing impaired, orthopectically handicapped and visually challenged candidates, 10% reduction in pass marks in each subject is admissible as per G.O.Ms.No. 150, dated 31-08-2006
6. A candidate desires to have revaluation can apply as per STLW(A) norms and notification of exam branch of STLW(A) issued at the time of declaration of results. A photo copy of valued theory answer script can also be obtained by paying the prescribed fee which will be mentioned in the said notification.
7. The Guidelines, Rules and Regulations framed by the SCETW in this regard will be applicable to the MBA Programme.
${ }^{\text {a }}$ CIE: Contimuous Intemal Evaluation (Max. Marks; 40)
Two internal tests will be conducted (two and half units for each internal). Third internal Exam will be conducted with full syllabus for the students who were absent or wish to improve their marks secured in two tests conducted earlier. Average of the best two Exams will be considered for final marks.

Break up for CIE 40 marks

S.No	Assessment Toel	Max. Marks
1	Interual Tests	
	Short answer questions $\quad 5^{*} 1=5$	5
	Essay Questions $\quad 2 * 10=20$	20
	Total	25
2	Case studies and/or Group	
	Discussions and or Activities	10
3	Assignments	5
	Total Marks	40

Scheme of Instruction \& Detailed Syllabus

The following criteria for Case studies and/or Group Discussions and/or Activities in Continuous Internal Evaluation are proposed: (2×5 Marks each) $\mathbf{- 1 0}$ Marks

I year-I semester :		
Course Code	Course Title	Case study/Group discussion/ Activity (2×5 marks each-10M)
MB101	Manapement \& Organizational Behaviour	Group Discussion
MB102	Accounting for Management	Case study
MB103	Marketing Management	Case smady
MB104	Elective-1	
	1. Business Law \& Ethics	Case study
	2. Fundanentals of Technology Management	Case study
	3. Managerial Economics	Group Discussion
	4. Busimess Process Re engineering	Case study
MB105	Elective - II	
	1. IT Applications for Management	Activity
	2. Business Communication	Group Discussion
	3. Customer Relationship Maxagement	Activity: Role play
	4. Statistics for Management	Case study
I year -II semester:		
MB201	Human Resource Management	Activity: role play
MB202	Financial Management	Case study
MB203	Business Research Methods	Case study
MB204	Elective - III	
	1. Economic Environment and Policy	Group Discussion
	2. International Busimess	Case study
	3. Financial Markets \& Services	Case sudy
	4. Corporate Social Respousibility	Case study
MB205	Elective - IV	
	1. Total Quality Management	Case stady
	2. Strategic Management Accounting	Case study
	3. Startup Management	Group Discussion
	4. Retail Management	Case study

Scheme of Instruction \& Detailed Syllabus

II year - semester III:		
Course Code	Course Titie	Case study/Group discussion/ Activity (2×5 marks each-10M)
MB301	Operations Management	Group Discussion. case study
MB302	E- Business	Group Discussion
MB303	Quantitative Techniques for Butsiness Decisions	case study
MB304	Discipline Specific Elective-I	
	I. Investment Management (Finance)	case study
	2. Product and Brand Management (Marketing)	case study
	3. Compensation Management (Human resource)	Group Discussion
	4. Decision Support Systems (Systems)	Group Discussion
MB305	Discipline Specific Elective -II	
	1. International Finance (Finance)	Group Discussion
	2. Promotion and Distribution Management (Marketing)	case study
	3. Organization Development (Human Resource)	Group Discussion
	4. Business Analytics (Systems)	case study
MB306	Innovation Management	Group Discussion
II Year-Scmester IV		
MB401	Strategic Management	case study
MB402	Business Intelligence	Group Discussion
MB403	Supply Chain Management	case study
MB404	Discipline Specific Elective -III	
	1. Financial Risk Management (Finance)	case study
	2. Consumer Behaviour (Marketing)	case study
	3. Performance Management (Human Resource)	Activity: role play
	4. Data Base Management Systems (Systems)	case study
MB405	Discipline Specific Elective-IV	
	1. Banking \& Insurance (Finance)	Group Discussion
	2. Services and Global Markering (Marketing)	case study
	3. Talent and Knowledge Management (Human Resource)	Group Discussion
	4. Software Project Management (Systems)	case study

Scheme of Instruction \& Detailed Syllabus

Pattern of Semester End Examination(SEE)

Section-A
Five short Answer questions of two marks each consists of ten marks

Section-B

Five Essay questions of 10 marks each consists of 50 marks with eight or choice from each unit. $5 \times 10=50$

The Practical Examination marks distribution is followed as 40 M (Internal), 60 M (External)
8. Conduct of Examinations:

Examination will be conducted based on the existing rules of examination Branch of STLW for I,IIIIII,IV semesters and only for IV semester separate advanced supplementary examinations will be conducted so as to facilitate the students for future career.
9. Award of Degree And Division:

Candidates will be awarded MBA Degree by Osmania University on successful completion of all Theory Courses, Practical Courses, Viva Voce and Project Report. The Division/Class will be awarded as per the STLW (A) norms.
10. Readmission for Pursuing Additional Elective Courses:

Readmission for pursuing additional elective courses in as per Osmania University norms.
11. Total number of credits to be completed to be eligible for the award of MBA degree: Total number of eredits at the end of fourth semester (MBA-Day):
$\mathbf{2 7}+\mathbf{2 7}+\mathbf{3 4}+\mathbf{3 5}=\mathbf{1 2 3}$
12. Awarding Cumulative Grade Point Average (CGPA): on par with University norms The absolute grading mechanism is followed in mapping the letter grades. The marks are converted to grades based on pre-determined class interval. As per the UGC

Scheme of Instruction \& Detailed Syllabus

recommendations a 10 -point grading system with the following letter grades are followed.
The same is fumished in the following tables for Theory courses and Laboratory,

Range of marks	Grade	Grade Point
$85-100$	O	$8.5-10.00$
$70-84$	A	$7.0-8.49$
$60-69$	B	$6.0-6.99$
$55-59$	C	$5.5-5.99$
$50-54$	D	$5.0-5.49$
$40-49$	E	$4.0-4.9$
Less than 40	F	

A Student obtaining Grade F shall be considered failed and will be required to reappear the examination.

The computations of SGPA and CGPA are followed as per the UGC guidelines. The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the conrses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.
$\operatorname{SGPA}(\mathrm{Si})=\Sigma(\mathrm{Cix} \mathrm{Gi}) / \Sigma \mathrm{Ci}$
Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a programme, i.e.
$\mathrm{CGPA}=\Sigma(\mathrm{CixSi}) / \Sigma \mathrm{Ci}$
Where Si is the SGPA of the $i^{\text {th }}$ semester andC is the total number of credits in that semester.

Scheme of Instruction \& Detailed Syllabus

13. General Clause:

It may be noted that beside the above specified rules and regulations all the other rule and regulations are in foree and applicable to semester system in Post-Graduate courses in Osmania University will be applicable as amended from time to time by the STLW The students shall abide by all such Rules and Regulations.

$N_{1} A N T A$
 COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN

(Private Un-aided Non-minonity Autonomous Institution)
(All eligible UG courses are accredited by NBA \& NAAC with 'A' grade)
Affiliated to Osmania University and Approved by AICTE

MBA - I Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	$10.00-11.00$ AM	$12.00-01.00 \mathrm{PM}$
22.12 .2022	 Organizational Behaviour	Accounting for Management
23.12 .2022	Marketing Management	Business Law \& Ethics/ Managerial Economics
24.12 .2022	Business Communication	

Principal/COE

[^0]CIE award list 2021-22 and 2022-23

Course : MBA										
				anch : N			: 11			
S.No.	Hall Ticket No.	HRM	FM	BRM	18	St mgmt	RM	MP	Total	
1	160621672001	27	29	20	22		24	85	207	
2	160621672002	38	40	40	40	40		95	293	
3	160621672003	40	39	40	39		39	90	287	
4	160621672004	29	25	26	31	28		80	219	
5	160621672005	37	35	40	39	40		95	286	
6	1606216772006	33	35	33	36	34		${ }_{93} 8$	254	
7	160621672007	40	31	40	40	40		97	288	
-	160621672008	37	36	40	40	40		90	283	
9	160621672009	39	40	40	40	40		95	229	
10	160621672010	31	26	24	29		39	80	229	
11	160621672011	37	40	32	39	40		95	283	
12	160621672012	39	35	40	40		40	90	284	
13	160621672013	40	39	35	${ }^{38}$	39		90	${ }_{2}^{281}$	
14	160621672014	40	${ }^{38}$	40	40		40	94	292	
15	160621672015	38	37	39	39	38		91	282	
16	160621672016	39	36	40	39	39		${ }^{88}$	${ }^{281}$	
17	160621672017	40	40	40	35	37		${ }_{88}^{88}$	${ }^{280}$	
18	160621672018	38	29	37	29	32		${ }_{87}^{87}$	252	
19	160621672019	40	${ }_{38}^{38}$	37	${ }_{3}^{39}$	${ }_{4}^{37}$		${ }_{85}^{85}$	276 276	
20	$\frac{160621677020}{160621672021}$	40	${ }_{4}^{35}$	39 40	34 39	40	38	${ }_{98}^{88}$	276	
${ }_{21}^{22}$	$\frac{1606216772021}{160621672022}$	40	${ }_{30}$	40	39	40	38	${ }_{98}$	294	
23	160621672023	37	39	40	34	34		95	279	
24	160621672024	40	40	40	40		40	89	289	
25	160621672025	38	38	37	40	40		85	278	
26	160621672026	35	19	28	30		30	93	235	
27	160621672027	${ }^{38}$	${ }^{33}$	${ }^{35}$	39	37		87	269 263	
Q				Now 97		जि	$\begin{aligned} & 39 \\ & \hline 8 \end{aligned}$			

S.No	HT Number	Name	ом	EB	QTBD	IM	cm	PBM	IF	OD	PDM	InM	Project Synopsis	on Contempo rary Topics
					34	38			36			35	42	45
19	160622672021	Katta Pragathi	29	36	34	38			32			37	47	47
20	160622672022	K Pooja Kailash	37	31	35	39			31			37	45	50
21	160622672023	K Pravalika	30	31	37	$\frac{39}{40}$			39			40	50	50
22	160622672024	Kushi Toshaniwal	40	39	40	40			40			39	50	50
23	160622672025	M Aishwarya	40	40	40	40			40			40	50	50
24	160622672026	M Jayashree	40	39	40	40	40			40		38	48	50
25	160622672027	M. Nandini Reddy	40	40	39		39			39		35	48	49
26	160622672028	M. Vikyathi	40	38	35		40			40		39	48	49
27	160622672029	Maliha Afreen	39	39	40		36			38		37	48	44
28	160622672030	Manne Apoorva	32	37	37	40			40			39	50	50
29	160622672031	Motai Indira	38	39	40		40			40		40	50	50
30	160622672032	Muna Sayeed	40	39	40	39			38			40	45	47
31	160622672033	Nagadhara Geeta	39	38	40		33			38		30	48	44
32	160622672034	N Ramya Sri	35	39	35		38			34		37	47	45
33	160622672035	Nameera Taranum	32	39	35	34			36			39	46	45
34	160622672036	Nenavath Akshaya	34	35	35		33			33		39	42	44
35	160622672037	Pujari Bhavani	31	36	38		29			32		37	48	45
36	160622672038	Pagilla Pravalika	38	38	39	36			39			38	45	47
37	160622672040	Pandala Neha	35	38	33			38			39	29	42	40
38	160622672041	Parike Sai Poojita	26	32	28	25			28	32		35	43	42
40	160622672043	P Anu Priya	30	34	32		28		34			33	45	46
41	160622672044	Radhika G	27				,	,		-		4	S	

Stanley College of Engineering \& Technology for Women (A)
Chapel Road,Abids,Hyderabad

Chapel Road,Abids,Hyderabad								
	CSE	VI SEM	CD					
$\begin{array}{\|c} \hline \text { S. } \\ \text { No. } \\ \hline \end{array}$	Roll No.	NAME	$\begin{aligned} & \text { MID- } \\ & 1(20) \end{aligned}$	$\begin{aligned} & \text { MID- } \\ & \text { 2(20) } \\ & \hline \end{aligned}$	AVG (20)	QUIZ(5)	ASSIGN (5)	TOT(30)
1	160620733001	A POOJEETHA REDDY	20	17	19	4	5	28
2	160620733002	ADVAITHA DADUVY	18	14	16	4	5	25
3	160620733003	NEHA BUDIDHA	17	2	10	3	5	18
4	160620733004	ARUTLA SRIJA	18	13	16	4	5	25
5	160620733005	AYESHA SIDDIQUA	AB	6	3	4	5	12
6	160620733006	BADAM RITHIKA	18	10	14	3	5	22
7	160620733007	$\begin{aligned} & \text { BHUDTHULA } \\ & \text { SOUJANYA } \end{aligned}$	19	14	17	3	5	25
8	160620733008	BOBBILI HRISHITHA	19	17	18	4	5	27
9	160620733009	BODU SHREYA	18	12	15	3	5	23
10	160620733010	CHANDA AKSHARA	20	17	19	4	5	28
11	160620733011	CHINTHALA PRANATHI	15	8	12	2	5	19
12	160620733012	DUGGI PRIYANKA	19	13	16	3	5	24
13	160620733013	ENJAM HAARTHI	14	13	14	4	5	23
14	160620733014	GOLLA SINDHUJA	18	12	15	3	5	23
15	160620733015	GOPA SHEETHAL	18	6	12	3	5	20
16	160620733016	G CHAITRA	AB	4	2	5	5	12
17	160620733017	IRUVENTI SATWIKA	19	15	17	3	5	25
18	160620733018	JANAPATI HIMAJA	20	20	20	4	5	29
19	160620733019	JANGILI MADHURIMA	AB	16	8	4	5	17
20	160620733020	JETRAM AASHRITHA	17	5	11	3	5	19
21	160620733021	K MALLIKA	20	17	19	4	5	28
22	160620733022	KADARLA SHARVANI	20	20	20	5	5	30
23	160620733023	KANTHA ANANYA	18	18	18	4	5	27

24	160620733024	KARNAKANTI SREEJANI	16	8	12	3	5	20
25	160620733025	KARRI SAI SANJANA REDDY	19	17	18	4	5	27
26	160620733026	KESARAM MEGHANA	11	9	10	3		
27	160620733027	KOTE MAMATHA	17	9	13	3	5	18
28	160620733028	KULSUM AYUB ABDUL SHAIK	AB	14	7	3	5	21 15
29	160620733029	MADABHOOSHI SREE LALITHA RANGA	15	10	13	4	5	22
30	160620733030	METTU SUJATHA	12	8	10	3	5	18
31	160620733031	MANEPALLI SRAVANI.	19	14	17	4	5	26
32	160620733032	MUDAVATHLAVANYA	18	16	17	4	5	26
33	160620733033	MUNAVATH NIKITHA	0	12	6	3	5	14
34	160620733034	NANDURI LALITHA S	2	ab	2	5	5	12
35	160620733035	N ALEKHYA	16	14	15	3	5	23
36	160620733036	NETHI NITHYA	19	16	18	4	5	27
37	160620733037	O NIHARIKA	20	15	18	4	5	27
38	160620733038	PERYALA ABHINAYA	16	5	11	4	5	20
39	160620733039	P. SPOORTHI REDDY	17	1	9	3	5	17
40	160620733040	P SUSHMITHA	17	9	13	3	5	21
41	160620733041	PENDEM KRITHI	17	14	16	3	5	24
42	160620733042	PERUGU RIDHI	12	12	12	3	5	20
43	160620733043	P ANAGHAA REDDY	20	15	18	4	5	27
44	160620733044	R SAI GAYATRI	12	7	10	4	5	19
45	160620733045	RAKSHITHA S N	13	5	9	3	5	17
46	160620733046	RITHIKA CHINTHA	18	5	12	3	5	20
47	160620733047	S DHURGESHWARI	16	11	14	3	5	22
48	160620733048	SATTUR AKSHITHA	17	5	11	3	5	19
49	160620733049	SHARMILA K	18	11	15	4	5	24
50	160620733050	SHREEYA M	18	9	14	4	5	23

51	160620733051	SHREEYA NITTURKAR	20	18	19	3	5	27
52	160620733052	SIMRAN G JAISWAL	16	17	17	4	5	26
53	160620733053	S KAMESWARI T	18	15	17	4	5	26
54	160620733054	S SHAISTA AIMAN	20	18	19	4	5	28
55	160620733055	TAHURA TABASSUM	18	15	17	4	5	26
56	160620733056	TASNEEM FATIMA	18	12	15	4	5	24
57	160620733057	V KAVERI	16	AB	8	AB	5	13
58	160620733058	VARANASI GAYATHRI	19	16	18	4	5	27
59	160620733059	VIJAYA SINDHOORI K	17	16	17	4	5	26
60	160620733060	V KEERTHANA	20	14	17	4	5	26
61	160620733301	S NEHA	17	11	14	4	5	23
62	160620733302	BOYALA NIHARIKA	19	18	19	4	5	28
63	160620733303	BANDARI PURNIMA	15	16	16	4	5	25
64	160620733304	VURA DIVYA	15	16	16	4	5	25
65	160620733305	JULLURI SHRIYA	17	15	16	3	5	24
GHOUSIA BEGUM								

Stanley College of Engineering \& Technology for Women
Chapel Road, Abids, Hyderabad 500001
Department of Computer Science and Engineering

Review-1V Evaluation Sheet

Student Name: Sathvika vulligaddala
Roll No: 160622742112

Email id: Sathulhavullegaddala,08@gmail.com
Contact No.: 7702861784 Distribution of marks

Evaluation by	Max. Marks	Evaluation Criteria / Parameter	Marks Awarded
Supervisor	30	Project Status / Reviews)	28
	20	Report	18
	10	Relevance of the Topic	09
	10	PPT Preparation	09
	10	Presentation	10
	10	Question and Answers	10

The progress of the project work is Satisfacrory/Unsatisfactory due to the following reasons

Project Convener (Guide)
Name: Dr. $B \vee$ Ramana Murthy
Date: 221012024
Signature: flNL

HOD, ESE
I

STANI

faculty

Department of Computer Science and Engineering

B. E/CSE/ VIII Semester - Project Work Phase II

Infernal Review -II

Student Name: Guua Prasalika

Proposed Title:

Name of the supervisor:

$$
\text { Dry,M. } 3 x a p \text { na }
$$

Dite of review:

The progress of the Major Project Phase - Il is Satisfictory/Ansatisfictory the ta the foflowing reasons

Therefore, it is recommended to Submit/ Suhmit with minor revisions/Cancel theppeiget

Signature ot the
Project Coordinator


```
PRC Members 1
```


如

Date:13.10.2022

B.E - III Sem - I Internal Examinations for the A.Y-2022-2023

Date/ Time	CSE - III SEM		ECE - III SEM		EEE - III SEM		IT - III SEM		CME - III SEM		AIDS - III SEM	
	$\frac{11.00 \mathrm{AM}}{\mathrm{M} \text {-III }}$	$03.30 \mathrm{PM}$	$\begin{array}{r} 09.30- \\ 11.00 \mathrm{AM} \end{array}$	$\begin{gathered} 02.00- \\ 03.30 \mathrm{PM} \end{gathered}$	$\begin{gathered} 09.30 \\ 11.00 \mathrm{AM} \end{gathered}$	$\begin{gathered} 02.00- \\ 03.30 \mathrm{PM} \end{gathered}$	$\begin{gathered} 09.30- \\ 11.00 \mathrm{AM} \end{gathered}$	$\begin{aligned} & 02.00- \\ & 03.30 \mathrm{PM} \end{aligned}$	$\begin{gathered} 09.30- \\ 11.00 \mathrm{AM} \end{gathered}$	$\begin{gathered} 02.00- \\ 03.30 \mathrm{PM} \end{gathered}$	$\begin{gathered} 09.30- \\ 11.00 \mathrm{AM} \end{gathered}$	$\begin{gathered} 02.00- \\ 03.30 \mathrm{PM} \end{gathered}$
27.10 .22	$(P \& S)$	Dis.Maths	ME\&A	PTSP	ECA	PTSP	P\&S	Dis.Maths	$\begin{gathered} \text { M-III } \\ \text { (P\&S) } \end{gathered}$	Dis.Maths	$\begin{aligned} & \text { M-III } \\ & \text { (P\&S) } \end{aligned}$	Dis.Maths
$\frac{28.10 .22}{29.10 .22}$	DE	$\begin{array}{\|c\|} \text { OOPs } \\ \text { using Java } \end{array}$	EDC	EMTL	EMF	SSA	DBMS	$\begin{aligned} & \text { OOPs } \\ & \text { using } \end{aligned}$	DE	OOPS using Java	DBMS	OOPs using Java
29.10 .22	CO		DSD		AE	FCS	DELD	ET	Concepts in COMP	ET	Concepts in COMP	ET

Internal Examination (IE) - FN - 09.30-10.45AM / AN-01.30-02.45PM
Quiz(Q) - FN-10.50-11.00AM -/ AN-02.50-3.00PM

B.E - IV Sem - I Internal Examinations for the A.Y-2022-2023

Internal Examination (IE) - FN -09.30-10.45AM / AN-02.00-03.15PM
Quiz(Q) - FN-10.50-11.00AM -/ AN-03.20-3.30PM

B.V. $f \div \cdot 23 / 3312023$

Principal/COE

$$
\frac{b^{2}}{e^{\sqrt{2}}}
$$

WPS MINI PROJECT

Tean 1
A Traveler's friend: Wanderlust
160617733153 Meghana Mangipudi
160617733142 K Apoorva
160617733124 B Srujana Eleena

Team 2
Let's Get Cooking: Recipes and Cooking Hacks

160617733176 Zeenat Sehar
160617733171 Syeda Aayesha Kaleem
160617733152 MD Saba Begum
-Team 3
Hotel Management System
160617733130 D. Harshitha
160617733146 K . Frannsi
160617733162 P. Samatha

Team 4
Hospital management system
160617733175 Y. Grace
160617733301 K. Pawani
160617733302 N. Jyothirmay

Froam
\rightarrow Noting $\quad . \quad \mathrm{m}$

169617733127 Challa Sncha

160617733129 Chinthakindi Srilekha
160617733148 Kolipaka Mounika

Teaim 6
Stock maintainence system
160617733147 Kangari Anusha
160617733168 Sikinimetla Chandana
160617733136 Gandra Akhila

Team 7
Event Management
160617733122 Asma Fatima
160617733157 Nida Fatima
160617733158 Nikhat Parveen

Team 8
CAMPUS LIAISON
160617733126 B. Jayanthi
160617733123 A. Soniya
160617733161 P. Keerthana

Team 9

Wedding planner website
16061773163 R. Akhila
160617733178 Sameeha jaleel
160617733304 Fizza naqvi

Peam 10
Online Car Rental System
160617733121 A. Vandana
160617733132 D.C. Jhansi Rani
160617733160 Pendyala Nikhila

Mini project evaluation sheet

Class Assessment sheet

STANLEY COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN

Department of Electrical and Electronics Engineering

2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

> Examination regulations of OU\& Autonomous Batch

STANLEY COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN (AUTONOMOUS)
 (Approved by AICTE \& Affiliated by Osmania University)

Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with 'A' Grade
STLW/EB/Circular/2022-23/128

Date: 04.07.2023

B.E-Internal Examination- I Circular

1. The I Internal Examinations for B.E- II Sem are being scheduled from $13^{\text {th }}-15^{\text {th }}$ July, 2023.
2. The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before $10^{\text {th }}$ July, 2023 before 03.30PM without fail.
3. The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -

Part-A - $5^{*} 2 \mathrm{M}=10 \mathrm{M}$ (All questions are compulsory)
Part-B - $3^{*} 5 \mathrm{M}=15 \mathrm{M}$ (3 out of 4 have to be answered)
4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
5. The HODs are requested to verify the submission of all subject Question papers on time.
6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before $\mathbf{1 0}^{\text {th }}$ July, 2023 without fail.

Copy to HOD's:

Principal $/ C O E$

STANLEY COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN (AUTONOMOUS)
(Approved by AICTE \& Affiliated by Osmania University)
Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with 'A' Grade

STLW/EB/Circular/2022-23/127

B.E II Semester- Internal Examination -I

All the B.E II semester students are informed that, I - Internal examinations are scheduled from $13^{\text {th }}-15^{\text {th }}$ July 2023. The detailed time table will be displayed on notice boards. Exams are conducted Offline and No Re-test will be conducted for the Absentee students.

IMPORTANT NOTE:

Students are strictly instructed to clear the college fee dues (if any) in order to get the Hall tickets for Mid-I examinations,

Copy to HOD's

LE

(Frivate Un-arded Non-minonty Autonomous Institution)
(All ellgible UG courses are accredited by NBA \& NAAC with 'A' grade) Afliated to Osmania University and Approved by AICTE
B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSE, CME \& AI\&DS)		Group-B (EEE, ECE \& IT)	
	$10.00-11.30 \mathrm{AM}$	$02.00-03.30 \mathrm{PM}$	$10.00-11.30 \mathrm{AM}$	$02.00-03.30 \mathrm{PM}$
13.07 .2023	M -II	Environmental Science	M -II	EITK
14.07 .2023	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition
15.07 .2023	BEEC		Engg. Physics/ App. Physics	English

Note:
Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30-02.45PM

Copy to HODs:

ECE
EEE

IT

ADCE

All ellgible UG courses are accredited by NBA \& NAAC w/th 'A' grade
Afiliated to Osmana University and Approved by AICTE
B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSE, CME \& AI\&DS)		Group-B (EEE, ECE \& IT)	
	$10.00-11.30 \mathrm{AM}$	$02.00-03.30 \mathrm{PM}$	$10.00-11.30 \mathrm{AM}$	$02.00-03.30 \mathrm{PM}$
	M -II	Environmental Science	M-II	EITK
14.07 .2023	DS with C	Chemistry	DS with C/ Circuit Theory/ Engg. Mechanics	Indian Constituition
15.07 .2023	BEEC		English	Engg. Physics/ App. Physics

Note:
Internal Examination (IE) - FN -10.00-11.15AM / AN-01.30-02.45PM
Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

Copy to HODs:

CSE
ECE
EEE
IT
H\&S

ADCE

AUTONOMOUS MID EXAM SCHEDULE A.Y:2022-23

Mid Exam Time Tables A.Y-2022-23 OU

Stanley College of Enginecring and Technology for Women
B.E - VIII Sem - II Internal Examinations (CIE) for the A.x-2021-2022

Date/rime	CSE - VIII SEM		ECE - VIII SEM		EEE - VIII SEM		IT-VIII SEM	
	$\underset{\substack{\text { cose } \\ \text { 10.30AM }}}{ }$	11.30.12 308PM	09.30-10.309M	${ }_{12}^{12300}$		$11.30-$ $12.30 \mathrm{PM}^{\prime}$		$11.30-$ 12.30 PM
18.05.22		Road Safety Engineering	Satellite $\substack{\text { Communications } \\ \text { (PE-III }}$	Wireless Sensor Networks (PE-IV)	Smart Grid Technology	Road Safety Engincering	Cryptography \& Network Security	Road Safety Engincering
19.0522			$\underset{\text { Systems(PE-V) }}{\text { Radar }}$	-				

MID EXAM TIME TABLES A.Y-2022-23
OU

Stanley College of Engineering and Technology for Women
B.E - V \& VII Sem - II Internal Examinations (CIE) for the A.Y-2022-23

Date/Time	CSE - V SEM		ECE-VSEM		EEE-V SEM		IT - V SEM		CME-V SEM		AIDS - V SEM	
	$\begin{array}{r} 10.00- \\ 11.00 \mathrm{AM} \\ \hline \end{array}$	$\begin{array}{r} 03.00- \\ 04.00 \mathrm{PM} \\ \hline \end{array}$	$\begin{gathered} 10.00- \\ 11.00 \times 19 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 03.00- \\ \hline 04.00 \mathrm{PM} \\ \hline \end{array}$	$\begin{gathered} 10.00- \\ 11.00 \mathrm{AM} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 03.00- \\ 04.00 p \mathrm{M} \\ \hline \end{array}$	$\begin{gathered} 10.00- \\ 11.00 \times 91 \end{gathered}$	03.80 . BADM	te. 60 . 11.0049	$\begin{array}{r} 03.00-1 \\ \hline 8.00 \mathrm{PN} \\ \hline \end{array}$	$\begin{aligned} & 16.00- \\ & 11.004 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 03.00- \\ & \hline \end{aligned}$
23.01.23	ALC	PPL	MPMC	DSP	LCS	EMI	AT	os	ATact	Os	ALC	FCT
25.01.23	AI	SE	AC	ACS	S8S	PS-II	AI	SE	AI	SE	4 I	SE
27.01.23	CN	DS	AWP	LAFM	LIC	RES	CN	O9at	Das	$\begin{aligned} & \text { WAST } \\ & \text { int-h } \end{aligned}$	DBMS	$\begin{aligned} & 10 \mathrm{~T} \\ & \text { IPE-1) } \end{aligned}$

Date/Time	CSE - VII SEM		ECE - VII SEM		EEE - VII SFM		IT-VtI SFM		EMtE - vit SEM	
	$\begin{gathered} 10.00- \\ 11.00 \mathrm{AM} \\ \hline \end{gathered}$	$\begin{gathered} 03.00- \\ 04.00 \mathrm{MM} \\ \hline \end{gathered}$	$\begin{gathered} 10.00= \\ 11.004+4 \\ \hline \end{gathered}$		$\begin{gathered} 18.00- \\ 11.60 \mathrm{~A}) \\ \hline \end{gathered}$			$\begin{gathered} \text { at. } 06 \\ \text { Bat. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ficse } \\ & \text { thans } \end{aligned}$	$\begin{aligned} & \hline 8500 \text { - } \\ & 84.00 \mathrm{P} 4 \\ & \hline \end{aligned}$
23.01 .23	FIOT	DATA SCI.	Es	VLSID	CED	s.e.	for	vLs	M.	NLF
24.01.23			MWT							
25.01 .23	Dis. sys.	is	SFIOF-III)	IAFM	PEAPs	Srm	CC	804	DEs shs $(m \cdot v)$	$\begin{aligned} & \text { MDt } \\ & (\mathrm{PE}-\mathrm{IV}) \end{aligned}$
27.01 .23			$\begin{gathered} \text { Ds Using R } \\ \text { (OF-II) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MCC } \\ & (\mathrm{PE}-\mathrm{II}) \end{aligned}$	H\%	Pur			$\begin{array}{\|c} \hline 8 \mathrm{Ers} \\ \mathrm{cos}-\mathrm{in} \\ \hline \end{array}$	

Stanley College of Engineering and Technology for Women

Stanley College of Engineering \& Technology for Women
Chapel Road, Abids, Hyderabad

Date: 06.12.2021

Examination circular

All the B.E III, V \& VII semester students are informed that, I - Internal examinations(CIE) are scheduled from $13^{\text {th }}-16^{\text {th }}$ Dec, 2021. The detailed time table will be displayed on notice boards, the students are requested to note the same. CIE exams are conducted Offline and No Re-test will be conducted for the Absentee students.

Stanley College of Engineering \& Technology for Women Chapel Road, Abids, Hyderabad

Date: 06.12.2021

Examination circular

1. The I Internal Examinations (Offline) for B.E- III, V \& VII sem are being scheduled from $13^{\text {th }}-16^{\text {th }}$ Dec, 2021.
2. The concerned faculty is requested to submit the question papers (hard and softcopies -2 sets in which either of them will be selected) through HOD/ exams coordinators to the Exam branch on or before $9^{\text {di }}$ Dec, 2021 before 03.30PM without fail.
3. The faculty is expected to follow the guidelines of University in setting the question paper.
4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
5. The HODs are requested to verify the submission of all subject Question papers on time.
6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before $9^{\text {th }} \mathrm{Dec}$, 2021 without fail.

STANLEY COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMFN
 (AUTONOMOUS) (Approved by AICTE \& Affiliated by Osmania University)

Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with 'A' Grade

No. 12/STLW/EB/2021

Date: 07.12.2021

To,
The Principal
Dear Sir,
It is hereby informed that the following members have been appointment as members of the Examination committee for the smooth conduct of Examination processes in the college for the academic year 2021-22.

SL. No	Examination Committee			
1	Principal	Mr SatyaPrasad Lanka	Chairman	
2	COE	Mr. S Narender Reddy	Convener	
3	ACOE	Mr S Suman	Member	
4	CSE	Mrs Sumayya Afreen	Member	
5	EEE	Ms G Aishvaria	Member	
6	ECE	Mrs Y Latha	Member	
7	IT	Mr T Sandeep	Member	
8	MBA	Mrs M Amala Kumari	Member	
9	H\&S	Ms Saba Fatima	Member	
10	ADCE	Mrs Asma	Member	

Thanking You.
 (S. Narender Reddy)

Chapel Road, Abids, Hyderabad-500 001.Telangana, India.Ph:040-23234880, 23244880 www.stanley.edu.in

Stanley College of Engineering \& Technology for Women

Chapel Road, Abids, Hyderabad
B.E. VI Sem Consolidated Internal Marks List for the Academic Year 2022-2023

Subject: Microprocessors and Microcontrollers (MPMC) (PC423EE)
Branch: EEE
Date (Mid-I): 03 May 2023
Date (Mid-II): 07 August 2023

S. No.	Roll Number	Name	Mid-I (20)	Mid-II (20)	Average	Assignment (5)	Quiz-I (5)	Quiz-II (5)	Best Quiz (5)	Total (30)
1	160620734002	Aditi Jaiswal	13	14	14	5	2	1.5	2	21
2	160620734003	Aishwarya Mulukala	17	16	17	5	3	2	3	23
3	160620734004	Akeefa Mahvish	16	18	17	5	3.5	3.5	4	26
4	160620734005	Akkaladevi Spandana	20	20	20	5	3.5	4	4	29
5	160620734006	Balam Maheshwari	16	18	17	5	3.5	3.5	4	26
6	160620734007	Boda Pravallika	9	14	12	5	3	2	3	20
7	160620734008	Badavath Priyanka	18	20	19	5	3	2	3	27
8	160620734009	Bunga Likitha	16	12	14	5	2.5	1.5	3	22
9	160620734010	Dabbeta Sathwika	15	17	16	5	2.5	2.5	3	24
10	160620734011	Dendi Saisree	15	20	18	5	3.5	4	4	27
11	160620734013	Kajjam Sanjana	13	19	16	5	2.5	3	3	24
12	160620734014	Karri Hari Naga Sree Lakshmi	20	19	20	5	1.5	3.5	4	29
13	160620734015	Kavvala Anusha	9	12	11	5	2.5	3	3	19
14	160620734016	Manda Sathvika	19	18	19	5	3	2.5	3	27
15	160620734017	Padala Swathi	16	14	15	3	3.5	2	4	22
16	160620734019	Ramavath Uma devi	18	17	18	5	2.5	3	3	26
17	160620734020	Saadiyah Tameem	14	17	16	5	3	2	3	24
18	160620734021	Sabavath Radhika	16	12	14	5	2.5	2.5	3	22
19	160620734022	Sadia Begum	20	17	19	5	4	3	4	28
20	160620734023	Sriramoju Pallavi	19	16	18	5	3.5	2.5	4	27
21	160620734024	Tejavath Shasi	18	9	14	5	1	2.5	3	22
22	160620734301	Mekala Manisha	8	11	10	3	0.5	1	1	14
23	160620734302	Suddala Akhila	20	20	20	5	3	4	4	29
24	160620734303	Sunnam Durga Sri	13	19	16	5	2.5	2.5	3	24
25	160620734304	D Ashritha	15	18	17	5	3.5	4	4	26
26	160620734305	Kotte Sai Manogna	18	15	17	5	2.5	4.5	5	27
27	160620734306	Panja Yamini	20	20	20	5	3	4	4	29
28	160620734307	Budde Alekhya	15	17	16	5	3	4	4	25
29	160620734308	Yamagani Niharika	20	20	20	5	4	4.5	5	30
30	160620734310	Oruganti Nandhini	14	17	16	5	4	4.5	5	26

31 160620734311	K Roopa Joshna	6	8	7	5	2.5	4	\| 4	16
		Mid-I			Mid-II				
Total No. of Students:		31			31				
No. of Students Present:		31			31				
No. of Students Absent:		0			0				
Faculty Name/Date:		Dr. Nagasekhara Reddy N			Dr. Nagasekhara Reddy N				
Faculty Signature/Date:		Tebry in 515123			Fely $=$ \% 10 \|08/23				
HOD Signature/Date:		Tedif.ry. 6/5/23				$\text { Tilf.ing } 12 \text { oosp3 }$			
		Departion of Electical 8 Electrones tngmeerny MEAD Stanley College of Engg. \& Tech. for Women Chapel Road. Abids. Hyderabad.				HEAD Diapariment of Electrical \& Electronics Engineerny c: alay College of Engg. \& Tech. for Women idel Road. Abids. Hyin mhad			

OSMANIA UNIVERSITY

HYDERABAD,(TS)
B.E. - AICTE VI Sem - 734 - EEE - 1606 , Stanley College of Engineering \& Technology for Women, Chapel Road, Abids , Hyderabad

RABAD,(TS)

Departmend ol Eloctical I Electronci Engneening
Santury College ol Engg. $\&$ Tech. for Womer Chapel Roesd, Abids. Hyderabad.

Autonomous Award List

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN, ABIDS DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

B.E IV SEM AWARD LIST 2022-2023

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN An UGC Autonomous Institution, Approved by AICTE, Accredited by NBA and NAAC with ' A ' Grade
Chapel Road, Abids, Hyderabad, Telangana, India
DEPARTMENT OF ELECTRICAL AND ELECTRONICSENGINEERING
EM-I Class Assessment Report
IV SEM (2022-23)

S.no	Roll no.	Name	Activity	Marks
1	160621734001	B. GREESHMA	GATE Ques. Quiz	2
2	160621734002	FEMINA PARVEEN	GATE Ques. Quiz	2
3	160621734003	K. SREEVANI	GATE Ques. Quiz	2
4	160621734004	KAUREEN SULTANA	GATE Ques. Quiz	2
5	160621734005	MARIAM FATIMA	GATE Ques. Quiz	2
6	160621734006	N.KAVERI	GATE Ques. Quiz	3
7	160621734007	S.CHANDANA	GATE Ques. Quiz	2
8	160621734008	U. VAISHNAVI	GATE Ques. Quiz	3
9	160621734301	J. RAJESHWARI	GATE Ques. Quiz	2
10	160621734302	KOTHA MAHESHWARI	GATE Ques. Quiz	2
11	160621734303	DONTHA TEJASWI	GATE Ques. Quiz	3
12	160621734304	THANTAM VIDYA	GATE Ques. Quiz	2
13	160621734305	RUMANA FAROOQUI	GATE Ques. Quiz	3
14	160621734306	G SUSHMITHA	GATE Ques. Quiz	3
15	160621734307	JEETHAM KEERTHI	GATE Ques. Quiz	3
16	160621734308	JAKKULA SWATHI YADAV	GATE Ques. Quiz	3
17	160621734309	GOLLA KOTI HARITHA	GATE Ques. Quiz	3
18	160621734310	ERLA SWATHI	GATE Ques. Quiz	3
19	160621734311	CHALMANI RAKSHITHA	GATE Ques. Quiz	2
20	160621734312	GODUGU GOWTHAMI	GATE Ques. Quiz	3

Subject Faculty

 Stanley College of Engg. \& Tech. for Wome Chapol Road, Abids. Hyderabad. A.P

$>$ Continuous evaluation of lab

Stanely College of Engineering \& Technology for Women

 Weekly Evaluation SheetAcademic Year 2022-23
SEM \qquad SEC A \qquad

STANI.EY COILEGE OF ENGINEKKINL: \& TECHNOIGGY FOR WOMEN (AUTONOMOUS)

C. No. STLW/Exame Br/Sottware/2021/2

Date: 15-12-2021
Aurchase Order
To
M/S.Smart Brainy Techno Solutions,
u5s,Road No.4, Sri Sai Raghaventra Homes,
jai Suryapatnam, Nadergul,
Hyderabad S01510
Sir.
Sub: STLW - Purchase Order for the required Equipments for Examination soffware "Smart Brainy Examination Management System" (SBEMS) - R.eg.
Ref.: Your Quotation No. SB/SCETW/07/2020-2021, dated CS/10/2021.
In discussions with you 1 am berewith placed the Purchase Order for the required.
Equipments for Examination Software "Smart Brainy Examination Management
System" (SBEMS) as given below.
5.No

S.No	Product	Unil Price	Oty	Anount
1	Fujitsu fi. 7160 Scanner [Both Nosrmal and Deltal Vatiation spstem) A4 ADE Colour (Duplex xanasy) $60 \mathrm{ppem} / 120 \mathrm{pm} 190$ sheet ADF, daily buty tyclp: 6,000 paget	60,000\%	1	60,000-00
2	Digital Paper Cutter Max Cutting with : $450 \times 450 \mathrm{~mm}$ Max. Cutting height: 40 mm Min.Cutting depth : 50 mm Clamp paper : Auto. Pash Paser: Auto	60,000/-	1	60,000 00
GST ¢ 18\%				21,60000
3	Sewing \& Stitching Machine (undustriaif for CMik Bookjet Stitching.	20,500/-	1	10.50000
GST © 12\%				1,26000
	Grand Total			1,53,360-00

(One Lakh Fifty Three Thoutand Three Hundred Sasty Onhr)
Terms \& Conditions:

1) 50% Payment advance with $P \mathrm{P}$.
2) 50% Payment after delivery goods

Correspondent
8, x^{3}

Date: 13.10.2022
B.E - III Sem - I Internal Examinations for the A.Y-2022-2023

Internal Examination (IE) - FN -09.30-10.45AM / AN-01.30-02.45PM
Quiz(Q) - FN-10.50-11.00AM - AN-02.50-3.00PM

Internal Examination (IE) - FN -09.30-10.45AM / AN-02.00-03.15PM
Quiz(Q) - FN-10.50-11.00AM -/ AN-03.20-3.30PM

BU. $\frac{f}{-} \cdot 23132023$ Brincipalicoes

Stanley College of Engineering and Technology for Women
B.E - V \& VII Sem - II Internal Examinations (CIE) for the A.Y-2022-23

$\stackrel{0}{6}$

†I	ZZ	$\angle Z$	SZ	6 I	82	¢2	¢Z	εz	IHSYVVS IGMODGNVN
†て	¢Z	$\dagger 乙$	七て	七乙	†て	¢Z	SZ	$\dagger 2$	HONIS VLIHSNVA W
62	¢Z	0ε	62	62	LZ	0ε	SZ	¢Z	IAVNHSIVA W
LI	91	七乙	£I	9 I	IZ	92	02	$0 Z$	TVHOGy VHSIG IVVDINXVT
ZI	91	81	¢I	SI	¢Z	£Z	02	$0 z$	VXAVY VTVLNกY
てI	LI	61	21	SI	てて	てZ	02	εz	VHLIHSXGGO VHDNOY
0ε	¢て	0ε	82	LZ	82	62	Sて	ャて	IMSVIGLL
82	IZ	0ε	82	82	62	82	t2	七2	İSVHLIWVN INODVGNOX
てI	てI	†I	てI	てI	8 I	4	¢I	SI	ILİWS WaTVdVAVLNVY
92	てZ	92	97	92	92	92	IZ	$\dagger 乙$	NVYIX IHLNVHS
82	SZ	62	82	82	0ε	62	SZ	Ez	VHLIHSİ ILNIDNVf
七て	てて	LZ	82	82	87	LZ	SZ	ャて	ILIHVS \％חaņ
七I	6 I	92	てz	8 L	¢Z	02	8 I	02	
SI	SI	ャて	02	6 I	LZ	¢Z	6 I	02	NIGangagan viznod
92	†て	62	¢Z	82	0ε	82	$\varepsilon 乙$	†て	VNHSIN WVDG
87	£Z	0ε	LZ	LZ	62	62	£Z	ャて	VHSİHHL INVONOHD
七て	ャて	82	LZ	†て	62	62	¢Z	02	VH．LIHS ${ }^{\text {FV }}$ V TV H．LNIHつ
£I	81	IZ	02	91	LZ	£	81	£z	NaS VHLIANVW Vfrog
てI	てI	81	てI	ZI	02	LI	SI	¢I	VIGVS TOOLVG
21	8 I	$\dagger 2$	02	LI	£z	$\dagger 2$	8I	02	VWHSagy VTVNVg
12	IZ	82	七乙	02	62	92	12	εz	VHENS IVS VTLICYV
¢I	\dagger ¢	てZ	91	9 I	$L Z$	92	七2	12	vfiys VTกxy
989	$\varepsilon L S$	8¢5	L\＆	S¢S	615	IEOS	OZOS	SLOS	omen

STANLEY COLL, © OF ENGINEERING AND TECHIVOLOGY FOR WOMEN
 OOPS Using Java LAB
(SPC311IT)

$\rightarrow \gg$ | 22 |
| :---: |
| 39 |
| 38 |
| 40 |
| 40 |
| 34 |
| 40 |
| 40 |
| 35 |
| 37 |
| 40 |
| 35 | ल $\underset{\sim}{\infty} \stackrel{\theta}{7}$

 ∞ | \mid Electrical |
| :--- |
| Technology |
| (SAC903EE) |

 DEPARTMENT OF INFORMATION TECHNOLOGY | $\begin{array}{c}\text { OOPS Using } \\ \text { Java }\end{array}$ | $\begin{array}{c}\text { Digital } \\ \text { Electronics \& }\end{array}$ | $\begin{array}{c}\text { Database } \\ \text { Management }\end{array}$ | Discrete |
| :---: | :---: | :---: | :---: |
| Mathematic | | | |

 e ∞ ले n m \cdots m

Roil
160621737001
160621737002
160621737003
160621737004
160621737005
160621737007
160621737008
160621737009
160621737010

$$
\begin{aligned}
& \longrightarrow
\end{aligned}
$$

$\underset{\sim}{2} \underset{\sim}{2} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{N} \underset{\omega}{N} \underset{\omega}{\omega} \underset{\sim}{N} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{\omega}$ \sum_{0}^{0}

S. ω

$$
\begin{array}{|l}
\hline & & & & & & & & & & & & & & & & & & . & & & & & & & & \\
\hline
\end{array}
$$

$$
u \infty
$$

$$
\begin{array}{l|l|}
\hline \text { un } & \text { un } \\
\hline
\end{array}
$$

$$
u^{u}
$$

swad

\[
2

\] | S0ELELLZ909I |
| :---: |
| †0ELELIZ909I |
| E0ELELIZ909I |
| Z0ELELIZ909I |
| L0ELELIZ909I |
| S90LELIZ909I |
| Ф90LELIZ909I |
| E90LELIZ909I |
| Z90LELIZ909I |
| I90LELIZ909I |
| 090LELIZ909I |
| 6S0LELIZ909I |
| 8S0LELIZ909I |
| LS0LELIZ909I |
| 9 SOLELIZ909I |

 *n + (1) 30 M) ${ }^{101}$

$$
0 \varepsilon
$$

$$
5 r_{6}
$$ 0

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (AUTONOMOUS)

(Affiliated to Osmania University \& Approved by AICTE)
(All eligible UG Courses are accredited by NBA \& Accredited by NAAC with 'A' Grade)

DEPARTMENT OF INFORMATION TECHNOLOGY
B.E. VIII Semester, 2022-2023

PROJECT EVALUATION SHEET
Cl Name of the Project Guide: EFFICIENT MANAGEMENT SYSTEM

BATCH.NO	ROLL NO.	NAME
18	160619732080	NANDANAM VAISHNAVI
	160619737082	PAIDI SAI SRI
	160619737056	AENDRA VARSHITA

S. No		7080	7082	7056
1.	Regularity (5)	05	05	05
2.	Contribution of each team member (5)	05	03	03
3.	Report (7)	25	05	05
4.	Project Demonstration (3)	03	03	03
5.	Technical Knowledge and Awareness related to the Project (3)	02	02	02
6.	Outcome (Publication/ Product) (2)	01	01	01
7.	Total	21	18	19

Project Guide

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (AUTONOMOUS)
(Affiliated to Osmania University \& Approved by AICTE)
(All eligible UG Courses are accredited by NBA \& Accredited by NAAC with 'A' Grade)

DEPARTMENT OF INFORMATION TECHNOLOGY
B.E. VIII Semester, 2022-2023

PROJECT EVALUATION SHEET
Name of the Project Guide: Dr Badugu Srinivasu
Project Title: Design \& Development of Emotion Recognition for

BATCH.NO	ROLL NO.	NAME
11	160619737058	Bellamkonda Meghan

S. No		7058		
1.	Regularity (5)	5		
2.	Contribution of each team member (5)	5		
3.	Report (7)	7		
4.	Project Demonstration (3)	3		
5.	Technical Knowledge and Awareness related to the Project (3)	3		
6.	Outcome (Publication/ Product) (2)	25		
7.	Total	2		

NヨWOM צO』 人

Stanley College Of Engineering And Technology For Women

Department of Information Technology

BE VI SEM- B SEC-MiniProject2021-22
Internal Guide Review Sheet

Project Title: APPLICATION FOR ONLINE OPD APPOINTMENT\& HOSPITAL INFORMATION SYSTEM.
Internal Guide:..Dr.:K.: RAMAKRISHNA
Batch No:......................
Student -1: Name:.N.:VAISHINAV.I.
R. No:..! $60.619 .7 .3 .7 .0 .8 .0 . .$.
Student -2: Name:..Y. N. (K)THA....
R. No:..16.0.6.197.3.70.5!....
Student - 3: Name:.G:NAN!INI....
R. No:..16.0.6. $19.7 .3 .70 .7 .0 . .$.

STANLEY COLLEGE OF ENGINEERING AND) TECHNOLOGY
FOR WOMEN (AUTONOMOUS)
(Affiliated to Osmania University \& Approved by AICTE)
(All eligible UG Courses are aceredited by NBA \& Accredited by NAAC with
'A' Grade)

DEPARTMENT OF INFORMATION TECIINOLOGY

B.E. VI Semester B Sec, 2021-2022

Internal Project Evaluation
Project Title: Applicelion for Onliu OPD
Name of the Project Guide: Dr. $\mathrm{C} \cdot \mathrm{Ramalouiha}$.

BATCH.NO	ROLL NO.	NAME
1	160619737080	N. Vaishnavi
	160619737051	Y. Nikitha
	160619737070	G. Nandini

S. No		80	51	70
1.	Problem Selection(2)			
		2	2	2
2.	Domain knowledge and technical knowledge (3)	2	2	2
3.	Design Methodology(4)	3	3	3
4.	Presentation (3)	2	3	2
5.	Q \& A (3)	3	3	3
		12	13	12
Prof				HOD -IT

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (rsupriya2903@gmail.com) was recorded on submission of this form.

Name *

R Supriya

Roll No *

160621737116

1. The time complexity of merge sort is *
$O(n \operatorname{logn})$
($O(n)$
O(n2)
None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *
© Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (harshithacheriyal@gmail.com) was recorded on submission of this form.

Name *
CH HARSHITHA

Roll No *
160621737073

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (archanaarchu61507@gmail.com) was recorded on submission of this form.

Name *
Smriti Sambrani

Roll No *
160621737120

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (netrakatre1@gmail.com) was recorded on submission of this form.

Name *

Netra katre

Roll No *
160621737107

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (deepthikonda694@gmail.com) was recorded on submission of this form.

Name *
Konda Deepthi

Roll No *
160621737091

1. The time complexity of merge sort is *
(O (nlogn)
$0(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (harinieslavath@gmail.com) was recorded on submission of this form.

Name *
E.Harini

Roll No *
160621737079

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (meharjowhari@gmail.com) was recorded on submission of this form.

Name *

Mehar Lakshmi Jowhari Bai

Roll No *
160621737099

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sowmyathokati@gmail.com) was recorded on submission of this form.

Name *
THOKATI SOWMYA

Roll No *
160621737126

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?

O Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2
(None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (nikhitakarna@gmail.com) was recorded on submission of this form.

Name *

Karna .Nikhita

Roll No *
160621737088

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (saralabai.j23@gmail.com) was recorded on submission of this form.

Name *

Sarala bai

Roll No *
160621737085

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
() $O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahekbagga56@gmail.com) was recorded on submission of this form.

Name *

Mahek Deep Kaur Bagga

Roll No *
160621737095

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (navithaamudala16@gmail.com) was recorded on submission of this form.

Name *
A Navitha

Roll No *
160621737066

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sheza.askander@gmail.com) was recorded on submission of this form.

Name *
Sheza Khader Askander

Roll No *
160621737122

1. The time complexity of merge sort is *

O O (nlogn)O(n)O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (musharani2902@gmail.com) was recorded on submission of this form.

Name *

M Usharani

Roll No *
160621737103

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mirdoddiroshini4@gmail.com) was recorded on submission of this form.

Name *
Mirdoddi roshini

Roll No *
160621737101

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sruthiundamatla2201@gmail.com) was recorded on submission of this form.

Name *
Sruthi

Roll No *
160621737127

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (ridafatima2573@gmail.com) was recorded on submission of this form.

Name *

Rida Maryam Fatima

Roll No *
160621737119

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (geethanjalipatel6@gmail.com) was recorded on submission of this form.

Name *
M.Geethanjali

Roll No *
160621737310

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mlkruthika13@gmail.com) was recorded on submission of this form.

Name *
M.laxmi kruthika

Roll No *
160621737097

1. The time complexity of merge sort is *
(O (nlogn)
$0(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *Quadratic
(LogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (meghanapyaram369@gmail.com) was recorded on submission of this form.

Name *
Meghana

Roll No *
160621737115

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (charanimadishetti0701@gmail.com) was recorded on submission of this form.

Name *
M.K.Charani

Roll No *
160621737093

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
() $\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<0(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (deekshasiripuram@gmail.com) was recorded on submission of this form.

Name *
S.deeksha

Roll No *
160621737124

1. The time complexity of merge sort is *

O O (nlogn)O(n)O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

Implicit constraints
Explicit Constraints
(None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
($)$ TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2

None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (akshithapeepalpat543@gmail.com) was recorded on submission of this form.

Name *
Peepalpat Akshitha

Roll No *
160621737112

1. The time complexity of merge sort is *

O $O(n \operatorname{logn})$$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kagithalaanjali026@gmail.com) was recorded on submission of this form.

Name *

Kagithala Anjali

Roll No *
160621737087

1. The time complexity of merge sort is *

O(nlogn)
O $O(n)$
O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *
© Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
($)$ TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (pothravenikavyasri@gmail.com) was recorded on submission of this form.

Name *
P.Kavya Sri

Roll No *
160621737114

1. The time complexity of merge sort is *

1 point

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kalyanin2003@gmail.com) was recorded on submission of this form.

Name *
N. Kalyani

Roll No *
160621737106

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
() $\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<0(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *
© Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jalkamsomiya@gmail.com) was recorded on submission of this form.

Name *
Jalkam Sowmya

Roll No *

160621737084

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jogakeerthana@gmail.com) was recorded on submission of this form.

Name *

Joga Keerthana

Roll No *
160621737083

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

Implicit constraints
Explicit Constraints
(None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
($)$ TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2

None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (saiharshitha090@gmail.com) was recorded on submission of this form.

Name *

D Sai Harshitha

Roll No *
160621737076

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (abhithasriabhi@gmail.com) was recorded on submission of this form.

Name *

Abhitha Sri

Roll No *
160621737108

1. The time complexity of merge sort is *
(O (nlogn)
$0(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kadamarundathipatel@gmail.com) was recorded on submission of this form.

Name *

Kadam Arundathi Patil

Roll No *

160621737086

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (sirireddy1808@gmail.com) was recorded on submission of this form.

Name *
Aishwarya Reddy

Roll No *
160621737129

1. The time complexity of merge sort is *

O 0 (nlogn)$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
($)$ TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (nidhi1sreshta@gmail.com) was recorded on submission of this form.

Name *
Nidhi Sreshta

Roll No *
160621737070

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (adullanithya296@gmail.com) was recorded on submission of this form.

Name *
Adulla Nithya

Roll No *
160621737068

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahalaxmipatel06@gmail.com) was recorded on submission of this form.

Name *
Mahalaxmi Patel

Roll No *
160621737075

1. The time complexity of merge sort is *
(O (nlogn)O(n)O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
($O(n)<O(\log n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 only
() d1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahin.mahinfatima@gmail.com) was recorded on submission of this form.

Name *

Mahin Fatima

Roll No *
160621737096

1. The time complexity of merge sort is *

O O (nlogn)O(n)O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (manihaamatul4@gmail.com) was recorded on submission of this form.

Name *

Maniha

Roll No *
160621737098

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (palledeekshitha704@gmail.com) was recorded on submission of this form.

Name *

PALLE DEEKSHITHA

Roll No *
160621737111

1. The time complexity of merge sort is *

1 point
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (rharshitha510@gmail.com) was recorded on submission of this form.

Name *
N. Harshitha

Roll No *
160621737105

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *Quadratic
() LogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *
© Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2
(None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kolaganialankrutha@gmail.com) was recorded on submission of this form.

Name *

Kolagani Alankrutha

Roll No *
160621737090

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
(Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
() $O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (aishwaryadutpala@gmail.com) was recorded on submission of this form.

Name *

D Aishwarya

Roll No *
160621737077

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford Algorithm
() Djikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$
() $O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

Implicit constraints
Explicit Constraints
(None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2
(None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (shireenunnisa8134@gmail.com) was recorded on submission of this form.

Name *
Shireen Unnisa

Roll No *
160621737123

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jyothi.koda38@gmail.com) was recorded on submission of this form.

Name *
koda jyothi

Roll No *
160621737089

1. The time complexity of merge sort is *

- $O($ nlogn $)$
$0(n)$$\mathrm{O}(\mathrm{n} 2)$None of the above

2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
() $\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<0(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

Implicit constraints
Explicit Constraints
(None of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2
(None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (chittimallevaishnavi@gmail.com) was recorded on submission of this form.

Name *
c.vaishnavi

Roll No *
160621737072

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (mahin.mahinfatima4@gmail.com) was recorded on submission of this form.

Name *

Mahin Fatima

Roll No *
160621737096

1. The time complexity of merge sort is *

O O (nlogn)$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (vennelaracha@gmail.com) was recorded on submission of this form.

Name *
Vennela

Roll No *
160621737118

1. The time complexity of merge sort is *

O O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (umaimasyed2003@gmail.com) was recorded on submission of this form.

Name *
Syeda Umaima Nazneen

Roll No *
160621737125

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (alainaather29@gmail.com) was recorded on submission of this form.

Name *

Alaina Ather

Roll No *
160621737069

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
() $\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<0(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (adidah.qureshi.786@gmail.com) was recorded on submission of this form.

Name *

Mubeena

Roll No *
160621737102

1. The time complexity of merge sort is *
(O (nlogn)
$O(n)$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmic
(O) LinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$
($\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is ${ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *

- Implicit constraintsExplicit ConstraintsNone of the above

9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (jahnavireddy294@gmail.com) was recorded on submission of this form.

Name *

Jahnavi Reddy

Roll No *
160621737071

1. The time complexity of merge sort is *
(O (nlogn)$\mathrm{O}(\mathrm{n})$O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *

O GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms$O(\log n)<O(n)<O\left(n^{*} \log n\right)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{\star} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *
© Greedy KnapsackDynamic Programming 0/1Branch and Bound 0/1Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point calledDead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.True
() False
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

DAA Class Assessment

DAA Class Assessment Test. Consists of 10 questions, time duration is 10 minutes. Form will close after 10 minutes. Total marks is 10 which will be divided by 5 to get the actual marks for CA.

The respondent's email (kaverishabad27@gmail.com) was recorded on submission of this form.

Name *

Kaveri

Roll No *
160621737307

1. The time complexity of merge sort is *

O(nlogn)
($O(n)$
O(n2)None of the above
2. Which of the following algorithms is used to find the shortest path between two * 1 point vertices in a graph with negative edges?

O Ford Fulkersons AlgorithmBellman Ford AlgorithmDjikstra's AlgorithmKruskal's Algorithm
3. What is the type of the algorithm used in solving the 8 Queens problem? *

O GreedyDynamic ProgrammingBacktrackingBranch and Bound
4. $\mathrm{O}(\mathrm{n})$ means computing time is *QuadraticLogarithmicLinearPolynomial
5. Which of the following shows the correct relationship among some of the more common computing times on algorithms
() $\mathrm{O}(\log n)<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(2 \mathrm{n})<\mathrm{O}(\mathrm{n} 2)$$O(n)<O(\log n)<O(n * \log n)<O(2 n)<O(n 2)$$\mathrm{O}(\mathrm{n})<\mathrm{O}(\log \mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<0(2$ power n$)$$\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}(\mathrm{n} 2)<\mathrm{O}(2$ power n$)$
6. The knapsack problem where the objective function is to minimize the profit is *Greedy KnapsackDynamic Programming 0/1
Branch and Bound 0/1
(Backtracking
7. A node that cannot be further generated and does not provide a particular solution is $\quad{ }^{*} 1$ point called
(O)

Dead nodeLive nodeE nodeAnswer node
8. The rule that restricts every element to get chosen from a particular set is called *Implicit constraintsExplicit ConstraintsNone of the above
9. Knapsack problem using dynamic programming uses Purging Rule to eliminate the pair * 1 point with lesser profit and more weight.
(O) TrueFalse
10. If the number of matches is zero in Boyer Moor Algorithm the number of shifts will be ${ }^{*} 1$ point decided byd1 onlyd2 onlyd1 and d2None of the above

Stanley College of Engineering and Technology for Women
 Department of Information Technology
 Main Projects A-Sec 2022-23

Batch	Cluster	Roll No	Name of the Student	Date :- 19-01-2023			
1	1	160619737036		Domain	Title		
	2	160619737006	Atmakuri Mounika	deep learning \& machine learning.	surveillance using object identification	Guide	Slot Time
	3	160619737001	Shanmukhi Akkiraju			Mr.T.Sandeep	09:00
		160619737001	Shanmukhi Akkiraju				
2	1	160619737039	Rupaji Aishwarya	machine learning.	Fake websites url detection		
	2	160619737020	Kanta Sakshitha			Mrs.N. Niharika	09:30
	3	160619737044	Shilpi Priyanka				
3	1	160619737014	Gangavaram Vyshnavi	Artificial Intelligence	Language translator	Ruquia	10:00
	2	160619737010	Chintal Swetha				
	3	160619737021	Karne Sriramya				
4	1	160619737026	Mah Jabeen Fatima	Machine Learning	Conversion of scanned documents to text documents using OCR techniques	Dr. B Srinivasu	10:30
	2	160619737028	Moukthika Mandapaka				
	3	160619737015	Golconda Vaishnavi				
5	1	160619737037	Yamini Yadav	Machine learning	Object detection for blind	vishalini	11:00
	2	160619737041	Sanskriti Agarwal				
	3	160619737009	Samriddhi Biradhar				
6	1	160619737045	Srija Yadav V	IOT	IOT based Air pollution monitoring system	Dr. G Sreelatha	11:30
	2	160619737013	Fatima Afra Nida				
	3	160619737047	Syeda Khadija Fatima				
7	1	160619737022	Kavya Myakala	machine learning	prediction of cyberbullying using ML	Dr. B Srinivasu	12:00
	2	160619737048	Chandana				
8	1	160619737025	Krishna Madhumitha	lo T and ML	commercial crop monitoring system	Ms J Sumedha	12:30
	2	160619737003	Ameena Fatima				
	3	160619737018	Ismath Razi				

9	1	160619737030	Padigela Sahithi	Machine Learning And Deep Learning	Dynamic Virtual Assistance for Educational Institutions	Dr. B Srinivasu	01:00
	2	160619737012	Dronavalli Darvika				
10	1	160619737024	k.shirisha	Machine learning	prediction of Stock market trends	Ch. Sreelatha	01:30
	2	160619737008	B. Sri Charani				
	3	160619737019	J.srinija				
11	1	160619737029	Nunna Navya Sri	Machine learning and Deep learning	Text summeriazation for Telugu document	Mr.T.Sandeep	02:00
	2	160619737034	P.Lahari				
	3	160619737002	Ambati Lahari				
12	1	160619737040	Ryala Akshitha	machine learning.	Authorised Parking System using Raspberry Pi	G Sreelatha mam	02:30
	2	160619737033	Pendyala Meghana				
	3	160619737016	Gudipati Venkata Satya Charitha				
13	1	160619737050	Uduthala Rajeshwari	Machine learning	price prediction of digital currency	Naagmani	03:00
	2	160619737049	Thumpala Bhargavi Nagalakshmi				
	3	160619737004	Anupur Sushmitha Rayan				
14	1	160619737031	Palabindela Ushasri	Network security	Text Encryption using Aes Algorithm	Mrs.T C Swetha Priya	03:30
	2	160619737032	Pandi Madhulika				
	3	160619737042	Sare Hyndavi				
15	1	160619737011	Deekshitha Kancharakuntla	Machine learning	Weapon detection and abnormal behaviour detection	Hajera	04:00
	2	160619737007	Shivani badam				
	3	160618737033	Nellavelli sowmya				
				.			
16	1	160619737046	Swetha Ponnapali	Machine learning	sign board translator for tourism	Dr. B .Srinivasu	04:15
	2	160619737043	Sharia Zainab				
	3	160619737038	Rida Fatima				
17	1	160619737035	Periketi Harshitha	Android App Development	Food waste reduction application	Dr. B . Srinivasu	04:30
	2	160619737005	Arisha Suhel				
	3	160619737017	Iqra Mahanoor				

Stanley College of Engineering and Technology for Women
Department of Information Technology
Main Projects B Section 2022-23

Batch	Cluster	Date - 20-01-2023					
		r Roll No	Name of the Student	Domain	Title	Guide	Slot Time
1	1	160619737086	SALLA SHIRISHA	Cloud Computing	Secure Cloud Storage Based On RLWE problem	Dr Gavin Sreelata	1900
	2	160619737093	THADEM BHARGAVI				
	3	160619737067	DYAGA SINDHU				
2	1	160619737062	BIBINAGAR AISHWARYA	Web develorment	Student Result \& Feedback System	Mrs.N. Nharica	0915
	2	160619737077	KOMMURU HIMA SRI SAI PRAHARSHA				
	3	160619737065	D AKSHITHA				
3	1	160619737078	M BRINDA IVENGAR	Machine learning	Cyberbullying intensity and category prediction of tweets	Dr.Gavini Sreelatha	09.30
	2	160619737076	KATAKAM HARIKA				
	3	160619737305	NAMILE MANASA				
4	1	160619737079	MIRUPATI SNEHA REDDY	Machine learning	Student performance analysis	Hajeera	0945
	2	160619737071	GUNDAPANENI SAI MEGHANA				
	3	160619737057	ALEKHYA KULKARNI				
5	1	160619737084	QANSA WASIF ALI	Machine leaming	Customer churn prediction	(Dr. Srinivasu Badugu)	1000
	2	160619737098	Y.VYSHNAVI REDDY				
	3	160619737087	SHARIKHA ANJUM				
6	1	160619737061	BANDI CHARISHMA CHOWDARY	machine learning	crop yield prediction using machine learning algonthms	d. Sumecha	10.15
	2	160619737064	CHOWHAN ANANYA SINGH				
	3	160619737059	BOLLAM PREETHI				
7	1	160619737055	AYESHA JAHAN	Deep Leaming	Image Orator	Ms. Naheed Sulana	10.30
	2	160619737088	SANOBAR SHADAN				
	3	160619737096	YASMEEN FATIMA				
8	1	160619737063	CHEERE SHARANYA	Web Development	Library And permission management for faculty and students	T.sandeep	10:45
	2	160619737069	GOGIKAR CHETNA				
	3	160619737052	AMARABOINA RAJESHWARI				
9	1	160619737073	K. HARSHITHA	NLP	Audio to sign language using nip	Ms vishalini krishnan	11:00
	2	160619737090	SAI DEEKSHITHA PONUGOTI				
10	1	160619737302	P. Harshini	Machine learning	stock market prediction	(Dr. Srinivasu Badugu)	11:15
	2	160619737304	Preethi .J				
11	1	160619737058	BELLAMKONDA MEGHANA	Deep learning	Speech emotion detection using deep learning	Dr. Srinivasu Badugu	11:30
12	1	160619737074	K SANGEETHA	Machine learning	Fake User identification on social network	CH.Srilatha	1200
	2	160619737060	BELLAMKONDA MAHALAXMI				
	3	160619737054	ALLI SAHITHI				
13	1	160619737303	GELLI KAVYA	Machine learning	lung cancer prediction using ct scan images	(Dr. Srinivasu Badugu)	12:30
	2	160619737301	P. Harshitha				
	3	160619737306	SANJANA				
14	1	160619737053	ANANTHOJU SAI SREEYA	web development and cloud computing	cloud based melro rail portal	Dr. Srinivasu Badugu	$01: 00$
	2	160619737081	P SNEHA				
	$3{ }^{3} 1$	160619737099	VUPPUNUTHULA INDU PRIYA				
15	$1{ }^{1}$	160619737068	G VANAJA	Machine learning	Signature verification system	T C Swetha Priya	01:30
	2	160619737094	THONTA SAI SRUTHI				
	$3{ }^{3} 1$	160619737066	DONTULA NIHARIKA				
16	$1{ }^{1}$	160619737095	TUMMA KALA SWARUPA RANI	web development	placement management system	T C Swetha Priya	0200
	2 1	160619737075	KAPPA SATHVIKA				
	31	160619737091	SREYA DESHPANDE				
	1 1	160619737070	GORITYALA NANDINI				

Stanley College of Engineering and Technology for Women
Department of Information Technology
Main Projects B Section 2022-23

Batch	Cluster	Date - 20-01-2023					
		r Roll No	Name of the Student	Domain	Title	Guide	Slot Time
1	1	160619737086	SALLA SHIRISHA	Cloud Computing	Secure Cloud Storage Based On RLWE problem	Dr Gavin Sreelata	1900
	2	160619737093	THADEM BHARGAVI				
	3	160619737067	DYAGA SINDHU				
2	1	160619737062	BIBINAGAR AISHWARYA	Web develorment	Student Result \& Feedback System	Mrs.N. Nharica	0915
	2	160619737077	KOMMURU HIMA SRI SAI PRAHARSHA				
	3	160619737065	D AKSHITHA				
3	1	160619737078	M BRINDA IVENGAR	Machine learning	Cyberbullying intensity and category prediction of tweets	Dr.Gavini Sreelatha	09.30
	2	160619737076	KATAKAM HARIKA				
	3	160619737305	NAMILE MANASA				
4	1	160619737079	MIRUPATI SNEHA REDDY	Machine learning	Student performance analysis	Hajeera	0945
	2	160619737071	GUNDAPANENI SAI MEGHANA				
	3	160619737057	ALEKHYA KULKARNI				
5	1	160619737084	QANSA WASIF ALI	Machine leaming	Customer churn prediction	(Dr. Srinivasu Badugu)	1000
	2	160619737098	Y.VYSHNAVI REDDY				
	3	160619737087	SHARIKHA ANJUM				
6	1	160619737061	BANDI CHARISHMA CHOWDARY	machine learning	crop yield prediction using machine learning algonthms	d. Sumecha	10.15
	2	160619737064	CHOWHAN ANANYA SINGH				
	3	160619737059	BOLLAM PREETHI				
7	1	160619737055	AYESHA JAHAN	Deep Leaming	Image Orator	Ms. Naheed Sulana	10.30
	2	160619737088	SANOBAR SHADAN				
	3	160619737096	YASMEEN FATIMA				
8	1	160619737063	CHEERE SHARANYA	Web Development	Library And permission management for faculty and students	T.sandeep	10:45
	2	160619737069	GOGIKAR CHETNA				
	3	160619737052	AMARABOINA RAJESHWARI				
9	1	160619737073	K. HARSHITHA	NLP	Audio to sign language using nip	Ms vishalini krishnan	11:00
	2	160619737090	SAI DEEKSHITHA PONUGOTI				
10	1	160619737302	P. Harshini	Machine learning	stock market prediction	(Dr. Srinivasu Badugu)	11:15
	2	160619737304	Preethi .J				
11	1	160619737058	BELLAMKONDA MEGHANA	Deep learning	Speech emotion detection using deep learning	Dr. Srinivasu Badugu	11:30
12	1	160619737074	K SANGEETHA	Machine learning	Fake User identification on social network	CH.Srilatha	1200
	2	160619737060	BELLAMKONDA MAHALAXMI				
	3	160619737054	ALLI SAHITHI				
13	1	160619737303	GELLI KAVYA	Machine learning	lung cancer prediction using ct scan images	(Dr. Srinivasu Badugu)	12:30
	2	160619737301	P. Harshitha				
	3	160619737306	SANJANA				
14	1	160619737053	ANANTHOJU SAI SREEYA	web development and cloud computing	cloud based melro rail portal	Dr. Srinivasu Badugu	$01: 00$
	2	160619737081	P SNEHA				
	$3{ }^{3} 1$	160619737099	VUPPUNUTHULA INDU PRIYA				
15	$1{ }^{1}$	160619737068	G VANAJA	Machine learning	Signature verification system	T C Swetha Priya	01:30
	2	160619737094	THONTA SAI SRUTHI				
	$3{ }^{3} 1$	160619737066	DONTULA NIHARIKA				
16	$1{ }^{1}$	160619737095	TUMMA KALA SWARUPA RANI	web development	placement management system	T C Swetha Priya	0200
	2 1	160619737075	KAPPA SATHVIKA				
	31	160619737091	SREYA DESHPANDE				
	1 1	160619737070	GORITYALA NANDINI				

17	2	160619737051		Machine learning	$\left.\begin{gathered}\text { Eligibitty Prediction using Gradient } \\ \text { Boosting Clasifier }\end{gathered} \right\rvert\,$	Ms.Nagamani	02:30
	3	160619737092	SUNKARA SAI SPANDANA				
18	1	160619737080	NANDANAM VAISHNAVI	Web Application	Student attendance System	Ms. Naheed Sultana	03:00
	2	160619737082	PAIDI SAI SRI				
	3	160619737056	AENDRA VARSHITHA REDDY				
19	1	160618737047	NAGA HARITHA	Android	A Game-based App for teaching the Mathematical Skills for Autistic Children	(Dr. Srinivasu Badugu)	03:30
	2	160619737083	PALNATI SNEHA				
	3	160619737097	YATA ASHWINI				
20	1	160619737085	RINKU SONI	ML, Web development	Classification of breast cancer using ml and deep learning	Ms.Nagamani	04:00
	2	160619737089	SAEEDAH ZAINA SHAIK				
21	1	160619737100	SUMAYA ABDUL RAHMAN	Aritifical intelligence	Multimodal fusion of fake news detection	Dr. Stinivasu Badugu	04:30

2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

- Examination procedures
- Processes integrating IT
- Continuous internal assessment system

IV. SCHEME OF INSRTUCTION AND EXAMINAIIO,

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employability Enhancement Courses. Employability Enhancement Courses include Project Work, Seminar, Professional Practices, Case Study and Industrial/Practical Training.
Appearance in End Semester Examination is mandatory for all Courses including theory, laboratory and project work. Performanee in each course of study shall be evaluated hased on (i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE),
For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini \& Major Projects, Field works \& Internships, Technical Seminars \& Paper writing etc. are 16.
Each course shall be evaluated for a maximum of 100 marks as shown below:

S.No	Category of course	Continuous Assessments	End-Semester Examinations
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks
2.	Laboratory Courses	40 Marks	60 Marks
3.	Project	80 Marks	120 Marks

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization. design thinking, internship, industry oriented mini-project, project stage-l and project stageII Courses shall be evaluated for 100 marks each.

Theory Courses :

* The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Intemal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Continuous Internal Evaluation (CIE - $\mathbf{4 0} \mathbf{M}$):

* Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M), Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination ($\mathbf{2 5} \mathbf{~ M}$):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The optional third sessional/Internal exam with full syllabus will be conducted. Average of best two sessional Exams shall be calculated and used as the final sessional marks for each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$
All questions are compulsory.
PART-B: $3 \times 5 \mathrm{M}=15 \mathrm{M}$

- In Part-B three out of four questions have to be answered.

Class Assessment (CA -5M):
The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

Activity	Max.Marks (5M)
Technical Participations in inter College Competitions / Paper Presentations / Publications	5Per Activity
Certification Courses (SWAY/M,NPTEL or Relevant online Recommended Course etc)	5Per Activity
Course Project/Project Based Leaming (PBL) (Group of three Students)	5Per Activity
Viva (Conducted by Course Committee)	5

he valuation and verification of answer scripts of CIE shall be completed within a week after the conduct of the examination.
Semester End Examination (SEE- -60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration.
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$

a. There shall be one question from each unit.
b. All questions are compulsory.

PART-B: $5 \times 10 \mathrm{M}=50 \mathrm{M}$
a. There shall be one question from each unit with intemal choice i.e., 'either' 'or' choice.
b. The student shall answer one question from each UNIT.
c. There could be a maximum of two sub divisions in a question i.c., (a) and/or (b).

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:
i) 60 Marks are allocated for quality of the project work covering
a. Literature-review,

- 10
b. Innovation/Originality
-10
c. Methodology -20
d. Relevance / Practical application which will be awarded jointly by the internal and external examiners.-20
ii) 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

STANLEY COLLEGE OF ENGINEERING; \& TECHNOLOGY FOR WOMF N (AUTONOMOUS)
(Approved by AICTE \& Affiliated by Osmania University) ${ }^{\text {(}}$ ' Grade Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with A Grade STLW/EB/Circular/2022-23/128

B.E-Internal Examination-I Circular

1. The I Internal Examinations for B.E- II Sem are being scheduled from $13^{\text {th }}-15^{\text {th }}$ July, 2023.
2. The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before $10^{\text {th }} \mathrm{July}, 2023$ before $\mathbf{0 3 . 3 0 \mathrm { PM }}$ without fail.
3. The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -

Part-A - 5* $2 \mathrm{M}=10 \mathrm{M}$ (All questions are compulsory)
Part-B - $3^{*} 5 \mathrm{M}=15 \mathrm{M}$ (3 out of 4 have to be answered)
4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
5. The HODs are requested to verify the submission of all subject Question papers on time.
6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before $10^{\text {th }}$ July, 2023 without fail.

(Private Un-aided Non-minontly Autonomous inam \& NAAC with 'A' grade) (All elliglble UG courses are accredifed by NBA B NAAC Afkiated to Osmana Unversty and Approved by AUCTE
04.07.2023
B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

Note: \quad IE - FN -10.00-11.15AM / AN-01.30-02.45PM
Internal Examination (IE) - FN-10.00-11 M / AN-02.50-3.00PM
Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

Copy to HODs:

IT
HAS
2.5.3 IT integration and reforms in the examination procedures and processes including Continuous Internal Assessment (CIA)/Formative Assessment have brought in considerable improvement in Examination Management System (EMS) of the Institution Describe the examination reforms with reference to the following within a minimum of 500 words.

- Examination procedures
- Processes integrating IT
- Continuous internal assessment system

IV. SCHEME OF INSRTUCTION AND EXAMINAIIO,

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employability Enhancement Courses. Employability Enhancement Courses include Project Work, Seminar, Professional Practices, Case Study and Industrial/Practical Training.
Appearance in End Semester Examination is mandatory for all Courses including theory, laboratory and project work. Performanee in each course of study shall be evaluated hased on (i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE),
For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini \& Major Projects, Field works \& Internships, Technical Seminars \& Paper writing etc. are 16.
Each course shall be evaluated for a maximum of 100 marks as shown below:

S.No	Category of course	Continuous Assessments	End-Semester Examinations
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks
2.	Laboratory Courses	40 Marks	60 Marks
3.	Project	80 Marks	120 Marks

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization. design thinking, internship, industry oriented mini-project, project stage-l and project stageII Courses shall be evaluated for 100 marks each.

Theory Courses :

* The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Intemal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Continuous Internal Evaluation (CIE - $\mathbf{4 0} \mathbf{M}$):

* Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M), Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination ($\mathbf{2 5} \mathbf{~ M}$):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The optional third sessional/Internal exam with full syllabus will be conducted. Average of best two sessional Exams shall be calculated and used as the final sessional marks for each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$
All questions are compulsory.
PART-B: $3 \times 5 \mathrm{M}=15 \mathrm{M}$

- In Part-B three out of four questions have to be answered.

Class Assessment (CA -5M):
The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

Activity	Max.Marks (5M)
Technical Participations in inter College Competitions / Paper Presentations / Publications	5Per Activity
Certification Courses (SWAY/M,NPTEL or Relevant online Recommended Course etc)	5Per Activity
Course Project/Project Based Leaming (PBL) (Group of three Students)	5Per Activity
Viva (Conducted by Course Committee)	5

he valuation and verification of answer scripts of CIE shall be completed within a week after the conduct of the examination.
Semester End Examination (SEE- -60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration.
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$

a. There shall be one question from each unit.
b. All questions are compulsory.

PART-B: $5 \times 10 \mathrm{M}=50 \mathrm{M}$
a. There shall be one question from each unit with intemal choice i.e., 'either' 'or' choice.
b. The student shall answer one question from each UNIT.
c. There could be a maximum of two sub divisions in a question i.c., (a) and/or (b).

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:
i) 60 Marks are allocated for quality of the project work covering
a. Literature-review,

- 10
b. Innovation/Originality
-10
c. Methodology -20
d. Relevance / Practical application which will be awarded jointly by the internal and external examiners.-20
ii) 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

STANLEY COLLEGE OF ENGINEERING; \& TECHNOLOGY FOR WOMF N (AUTONOMOUS)
(Approved by AICTE \& Affiliated by Osmania University) ${ }^{\text {(}}$ ' Grade Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with A Grade STLW/EB/Circular/2022-23/128

B.E-Internal Examination-I Circular

1. The I Internal Examinations for B.E- II Sem are being scheduled from $13^{\text {th }}-15^{\text {th }}$ July, 2023.
2. The concerned faculty is requested to submit the question papers (hard and softcopies - 2 sets) through HOD/ exams coordinators to the Exam branch on or before $10^{\text {th }} \mathrm{July}, 2023$ before $\mathbf{0 3 . 3 0 \mathrm { PM }}$ without fail.
3. The faculty is expected to follow the guidelines issued by Dean, Academics in setting the question paper (25 Marks). Question paper pattern -

Part-A - 5* $2 \mathrm{M}=10 \mathrm{M}$ (All questions are compulsory)
Part-B - $3^{*} 5 \mathrm{M}=15 \mathrm{M}$ (3 out of 4 have to be answered)
4. Faculty should mention the new Blooms Taxonomy and CO, PO mapping on the Question paper in the tabular form. No deviation is entertained.
5. The HODs are requested to verify the submission of all subject Question papers on time.
6. The HOD/exam coordinators are requested to submit the list of invigilators to the exam branch as per the request on or before $10^{\text {th }}$ July, 2023 without fail.

(Private Un-aided Non-minontly Autonomous inam \& NAAC with 'A' grade) (All elliglble UG courses are accredifed by NBA B NAAC Afkiated to Osmana Unversty and Approved by AUCTE
04.07.2023
B.E - II Sem - I Internal Examinations for the A.Y-2022-2023

Note: \quad IE - FN -10.00-11.15AM / AN-01.30-02.45PM
Internal Examination (IE) - FN-10.00-11 M / AN-02.50-3.00PM
Quiz(Q) - FN-11.20-11.30AM -/ AN-02.50-3.00PM

Copy to HODs:

IT
HAS

IV. SCHEME OF INSRTUCTION AND EXAMINATION

ASSESSMENT PROCEDURES FOR AWARDING MARKS

All B.E. programmes consist of Theory Courses, Laboratory Courses and Employabilit Enhancement Courses. Employability Enhancement Courses include Project Work, Seminat Professional Practices, Case Study and Industrial/Practical Training.
Appearance in End Semester Examination is mandatory for all Courses including theorg, laboratory and project work. Performance in each course of study shall be evaluated based on
(i) Continuous Assessments throughout the semester and (ii) End Semester Examination at the end of the semester. The evaluation shall be based on Outcome Based Education (OBE). For Theory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. For Laboratory Courses out of 100 marks, the maximum marks for continuous assessment is fixed as 40 and the end semester examination carries 60 marks. The Project credits including Mini \& Major Projects, Field works \& Internships, Technical Seminars \& Paper writing etc. are 16.

Each course shall be evaluated for a maximum of 100 marks as shown below:

S.No	Category of course	Continuous Assessments	End-Semester Examinations
1.	Theory Courses / Theory Courses with Laboratory	40 Marks	60 Marks
2.	Laboratory Courses	40 Marks	60 Marks
3.	Project	80 Marks	120 Marks

DISTRIBUTION OF MARKS AND EVALUATION METHODOLOGY:

The performance of a student in each semester shall be evaluated course wise with a maximum of 100 marks for theory and 100 marks for practical Courses. In addition, design sensitization, design thinking, internship, industry oriented mini-project, project stage-I and project stageII Courses shall be evaluated for 100 marks each.

Theory Courses :

- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution.
- For theory Courses, the distribution of marks shall be 40 marks for Continuous Internal Evaluation (CIE) and 60 marks for the Semester End Examination (SEE).

Rules \& Regalations

Continuous Internal Evaluation (CIE - 40 M):

- Continuous Internal Evaluation (CIE) shall consist of sessional examination (Internal Exam- 25 M), Quiz (Q-5M). Assignment (A-5M) Class Assessment (CA- 5 M).

Internal Examination (25 M):

- For theory Courses, Two sessional/Internal exams will be conducted compulsory. The optional third sessional/Internal exam with full syllabus will be conducted. Average of best two sessional Exams shall be calculated and used as the final sessional marks for each course. Each sessional examination shall be evaluated for 25 marks.
- Question paper pattern for sessional examination (25 Marks) shall be as follows:

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$
All questions are compulsery.
PART-B: $3 \times 5 \mathrm{M}=15 \mathrm{M}$

- In Part-B threc out of four questions have to be answered.

Class Assessment (CA-5M):
The CA marks of each subject will be acquired by performing any one of the following activity during the semester.

Activity	Max.Marks (5M)
Technical Participations in inter College Competitions / Paper Presentations / Publications	5Per Activity
Certification Courses (SWAYAM,NPTEL or Relevant online Recommended Course etc)	5Per Activity
Course Project/Project Based Learning (PBL) (Group of three Students)	5Per Activity
Viva (Conducted by Course Committee)	5

he valuation and verification of answer seripts of CIE shall be completed within a week after the conduct of the examination.

Semester End Examination (SEE - 60 M):

- The SEE shall be conducted at the end of semester for a total of 60 marks of 3 hours duration:
- The syllabus for the theory Courses shall be divided into FIVE units and each unit carries equal weightage in lerms of marks distribution.

Question paper pattern for SEE (60 Marks) shall be as follows:

Rules \& Regulations

PART-A: $5 \times 2 \mathrm{M}=10 \mathrm{M}$

a. There shall be one question from each unit.
b. All questions are compulsory.

PART-B: $5 \times 10 \mathrm{M}=50 \mathrm{M}$

a. There shall be one question from each unit with internal choice i.e, "either' 'or'
choice.
b. The student shall answer one question from each UNIT.
c. There could be a maximum of two sub divisions in a question i.c., (a) and/or (b) The evaluation of BE project (Project -II/ Fulltime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:

The evaluation of BE project (Project -IV/ Fullime Internship) for semester end examination consists of a maximum of 200 marks which will be distributed as per the guidelines given below:
i) 60 Marks are allocated for quality of the project work covering
a. Literature-review,
-10
b. Innovation/Originality

- 10
c. Methodology - 20
d. Relevance / Practical application which will be awarded jointly by the internal and external examiners. -20
ii) 60 Marks are allocated for candidate's presentation and performance in terms of her viva-voce examination and overall subject knowledge and overall subject knowledge and output/outcome/Results.

Rules \& Regulations

IX. Improvement of Overall Score

1. A Candidate who wishes to improve her Overall score may do so within one academic year immediately after having passed all the examinations of the B.E. Degree program, by reappearing in not more than two semester (ali subjects pertaining to the semester taken together) examinations.
2. For the award of the Overall score, she will have the benefit of the higher of the two aggregates of marksigrade secured in the corresponding semester(s).

X. General Rules of Examination

- Procedures and the conduction of Exams will be as per Osmania University.
- The three mid exams in a semester and the average marks of best two exams will be taken as final CIE marks.
The CIE marks will be divided as 25 M -Exam, 5 M -Assignment, 5 M -Quiz, 5 M -CA. In Mid exam, the Parr-A all questions to be answered and choices will be given in Parr-B. The Practical Examination marks distribution is followed as 40 M (Intemal), 60 M (External) and there will be three internal Exams in a semester.
The distribution of Lab intemal Marks as 10M (Continuous Assessment), 10M (Record). 20M (Exam (10M Write up 10 M for viva)).
- The grading and Malpractice system will be same as Osmania University.
- The procedure for detention and rejoining of students can be changed by case to case by approval of Academic Council/ CAS.
- The rankers of each department will be given upto Top 10 ranks.
- The attendance system as per Osmania University.

XI. TRANSITORY REGULATIONS:

1. Whenever a Course or Scheme of Instruction is revised/modified in a particular semesteryear, two more examinations immediately following thereafter shall be conducted according to the old syllabus/regulations, provided the content in the course has changed more than 40%.
2. Candidates not appearing at the examinations or failing in them shall take the examination subsequently uccording to the revised syllabus and regulations.

XII. RANGE OF CREDITS

Credit system will be implemented in each semester. The credir hours for each theory course, laboratory sessions, Skill Development Courses and project work are clearly mentioned in the scheme of instruction.

Stanley College of Engineering \& Technology for Women (AUTONOMOUS)
(Approved by AICTE \& Arillated by Osmania Univenalty)
Accredited by NBA-UG (CSE, ECE, EEE \& IT) Z NAAC with ' A ' Grade

English Lab SHS911EG
Academic Year 2022-23 Semester - 11
Name: Beggenapu Siva Kecrthand

Continuous Evaluation Sheet
Branch/Section: \qquad
Rall Number: 161622731211

Remarks:

Faculty signature

Stanloy College of Engineering z Technology for Women (AUTONOMOUS) (Approved by AICIE 8 Affitiated by Osmania Univeraity)
Acersditod by NBA.UG (CSE, ECE, EEE $\&$ IT) \& NAAC with 'A' Grade

English Lab SHS911EG

Academic Year 2022-23 Sementer - 1
Name ANAGAYA SAMEFKSHA

Continuous Evaluation Sheet

Hranch/Section: \qquad $C S E=C$ Roll Numbert 160622732129

Remurle:

Faculty signature

Mid I md II Ave Q A CA T Lab. int

Dept $118 \underbrace{\text { cint. 200\% }}$
Dept. 1185
sub = Emoi- Physic) $535 \sqrt{901} \mathrm{PH}$

Mid I (25)	Mid 11 (25)	$\begin{aligned} & \mathrm{Avg} \\ & (25) \end{aligned}$	Quit (5)	Assign ment	CA (5)	$\begin{gathered} \text { Total } \\ 40 \\ \hline \end{gathered}$	LAB 40

1.	160621735001	18	85	18.5	4.5	4	4	31	30

| 3 | 1606 | 21 | 735003 | 4 | 16 | 15 | $4 \cdot 0$ | 5 | 5 | 29 | 36 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1606 | 21 | -35000 | 16 | 21 | 18.5 | 4.5 | 4.5 | 5 | 33 | 32 |

| 5 | 1606 | 21 | 735 | 005 | 05 | 18 | 11.5 | 3.75 | 4.25 | 4 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 6 | 1606 | 21 | 735006 | 10 | 24 | 17 | 3.4 | 4 | 5 | 30 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 9 | 606 | 61735009 | 07 | 19 | 13 | 3.5 | 5 | 4 | 26 | 32 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 606 | 19 | 735010 | 8 | 27 | 20.5 | 5 | 4.5 | 3 | 33 | 38 |

$14 \quad 160621735014 \quad 12 \quad 17 \quad 14.5 \times 35 \quad 5 \quad 4 \quad 4 \quad 27$
15

18	60621735018	18	23	20.5	4	4	4	33	3
19	160621735019	10	11	10.5	2.75	3.25	5	2.2	3

$22 \quad 160621735022-10 \quad 19 \quad 1454.5$
$23 \mid 606217350230$
24

STANLEY
COLLEGE OF ENGINEERING S TECHNOLOGY FOR WOVEN

30.06 .2022
B.E - II Sem - II Internal Examinations for the A.Y-2021-2022

Principal
(Privato Un-aided Non-minority Autonomocas Inasitution)
(Alt ellgible UG courses are accredited by NBA \& NAAC with 'A' gracle) Amliated to Ommanio Univernity and Approved OY AICTE
27.12.2022

B.E - I Sem - I Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSE, CME \& AI\&DS)		Group-B (EEE, ECE \& IT)	
	$10.00-11.30 \mathrm{AM}$	$02.30-04.00 \mathrm{PM}$	$10.00-11.30 \mathrm{AM}$	$02.30-04.00 \mathrm{PM}$
05.01 .2023	English	PPS	Chemistry	PPS
06.01 .2023	M-I	EITK	M-I	Environmental Science
07.01 .2023	Physics	Indian Constituition	FEE/BEEC	

Note:

Internal Examination (IE) - FN - $10.00-11.15 \mathrm{AM} / \mathrm{AN}-01.30-02.45 \mathrm{PM}$ Quiz(Q) - FN-11.05-11.15AM -/ AN-02.50-3.00PM

STANLEY COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN
(AUTONOMOUS)
(Approved by AICTE \& Affiliated by Osmania University)
Accredited by NBA-UG (CSE, ECE, EEE \& IT) \& NAAC with 'A' Grade

STLW/EB/Circular/2022-23/89
Date: 14.02.23
B.E I Semester Internal Examination -II

All the B.E I semester students are informed that, II - Internal examinations are scheduled from $02^{\text {nd }}-04^{\text {th }}$ March, 2023. The detailed time table will be displayed on notice boards. Exams are conducted Offline and No Re-test will be conducted for the Absentee students.

IMPORTANT NOTE:
Students are strictly instructed to clear the college fee dues (if any) in order to get the Hall tickets for Mid-II examinations.

Copy to HOD's
Display on NB's

CE
ACE
ERE

COLLEGE OF ENGINEERING \& TECHNOLOGY FOR WOMEN
(Private Un-alded Non-minority Aufonomoua Instifution)
(All ellgible UG courses art accredfled by NBA A NAAC with 'A' grade)
Amwated to Osmania Univeraty and Approved by AICTE
14.02 .23
B.E - I Sem - II Internal Examinations for the A.Y-2022-2023

Date / Time	Group-A(CSE, CME \& AI\&DS)		Group-B (EEE, ECE \& IT)	
	$10.30-12.00 \mathrm{PM}$	$02.30-04.00 \mathrm{PM}$	$10.30-12.00 \mathrm{PM}$	$02.30-04.00 \mathrm{PM}$
02.03 .23	English	PPS	Chemistry	PPS
03.03 .23	EITK	M-I	Environmental Science	M-I
04.03 .23	Physics	Indian Constituition	FEE/BEEC	

Note:

Internal Examination (IE) - FN - $10.30-11.45 \mathrm{AM} / \mathrm{AN}-02.30$ - 03.45PM
Quiz(Q) - FN-11.45-12.00PM -/ AN-03.45-4.00PM

Copy to HODs:

Stanely College of Engineering \& Technology for Women
Applied Physics Lab
SSS 912 PH. Weekly Evaluation Sheet
Academic Year 2022-23
SEM II sec_IT-A

Esta. 2008

The following students of IT-A, sem 2, Academic year 2022-2023 have successfully completed "Project Based Learning System" named different projects/working models in Applied Physics under the guidance of J.P.Pramod.

Laser Home Security System 5

S.NO	Roll Number	Name	Signature
1	160622737002	A. Lahari	Whary.
2	160622737015	D. Deepika	D. Decepila
3	160622737035	K. Krushna Sri	Kiuctimasi
4	160622737057	S.Harshitha	Harhithe

Application of Solar Energy - cycle

S.NO	Roll Number	Name	Signature
1	160622737001	A. Neelu	Ancer
2	160622737038	K. Akhila	(x)
3	160622737058	Syyeda Uzma	G)
4	160622737059	T. Kruthika	T. Kauthike

Servo Distance Indicator using Arduino

S.NO	Roll Number	Name	Signature
1	160622737009	B. Veda Bharati	Veday/
2	160622737031	K. Varshini	Varshini
3	160622737033	K. Vaishnavi	Vaithy

Sensor Laser - Security

S.NO	Roll Number	Name	Signature
1	160622737003	A. Pooiitha	A.Poalitha
2	160622737004	A. Kruthika	A. Kruthika.
3	160622737021	G. Manaswi	Qumbei
4	160622737024	G. Kushika	kugury

Heart rate measurement using Arduino S

S.NO	Roll Number	Name	Signature
1	160622737011	B. Keerthana	(4)
2	160622737012	B. Vaishnavi	- unssay $^{\text {Vastren? }}$
3	160622737014	Ch. Nikitha	Nikithy
4	160622737028	J. Lasya	lasycy

Laser Security Alarm System S

S.NO	Roll Number	Name	Signature
1	160622737005	Asfiya Kausar	As
2	160622737008	B. Brinda	(B.Buinda)
3	160622737019	G. Sneha	such.
4	160622737048	P. Ramya Sri	Pfuy.
5	160622737063	Y. Shiva Pranathi	y-Shiva pra

Surveillance Car using ESP 32 Camera

Powered Night guard light using Arduino

S.NO	Roll Number	Name	Signature
1	160622737007	Ayesha Siddiqa	Ayesh
2	160622737017	Fareeha Ifthekhar	favy.
3	160622737061	T. Harshitha	Sriharshitha
4	160622737065	Zumar Sania	Zame

Laser Light Alarm Security System s

S.NO	Roll Number	Name	Signature
1	160622737010	Vaishnavi B	B vaishnavi
2	160622737016	E. Kalyani	Kalyahi
3	160622737022	G. Gangothri	G. Ganguthri
4	160622737023	G. Mamatha	G. Mamather

ECG Monitoring S

S.NO	Roll Number	Name	Signature
1	160622737018	G. Manogna	e.Manf
2	160622737030	K. Kavya	Coye
3	160622737044	N. Pooja Reddy	N. Noaja
4	160622737045	N. Prajwali	Pnajuall

Smart Bridge - Automatic Height Increase when flooding

S.NO	Roll Number	Name	Signature
1	160622737032	Varshini Reddy	vorshini
2	160622737037	K. Yuktha	K Yukthe
3	160622737060	T. Bharani	\& 8 usem

Laser Light Show 5

S.NO	Roll Number	Name	Signature
1	160622737013	Ch. Vaishnavi	chivaishnavi
2	160622737020	G. Manasa	G. Mannes
3	160622737027	Madhumitha	Nodhumitla
4	160622737029	J. Pooja	Pe

Obstacle avoiding Robot using Bluetooth control and Arduino

S.NO	Roll Number	Name	Signature
1	160622737050	P. Lavanya	P- Cavany 4
2	160622737051	R. Swarnalatha	RS Suaturitis.
3	160622737052	R. Ujwalitha	R.y.unolita
4	160622737053	R. Vaishnavi	Ruishnay

Laser Security Alarm System

S.NO	Roll Number	Name	Signature
1	160622737046	P. Sanjana	Sujaire
2	160622737056	Sriya Gogikar	Sige
3	160622737062	Brindha Hasini	Shindu

Electromagnetic Induction s

S.NO	Roll Number	Name	Signature
1	160622737034	Khutheja Iram	Tqainu
2	160622737049	Priyanka B	Rejutate
3	160622737054	Saniya Afreen	Qif
4	160622737055	Sidra Noorin	Sidía.

Rain detector using sensor

S.NO	Roll Number	Name	Signature
1	160622737025	G. Harika	G.HariKa.
2	160622737040	M. Srija	N.sila
3	160622737041	M. Mounika	M. Moun)fle
4	160622737042	M. Teena	M.Teuappachathi

19. Fr. Anustacha $23 / 8 / 23$

$$
H O D(H \& S)
$$

AY: 2022-23, SEM-II, IT-A

"ARDUINO-POWERED NIGHT GUARD LIGHT"

UNDER PROJECT BASED LEARNING SYSTEM

-
B.E. - L. Sem Consolidated Marks List for the Academaic Year 2022-2023 Subject: Applied Physics Branch: CSE-A Date (Mid-I): $07 / 01 \mid 2023$ Date Mid-II): $04|03| 2023$

$\begin{aligned} & \hline \text { SL. } \\ & \text { No. } \end{aligned}$	Roll No	$\begin{gathered} \hline \text { Mid - I } \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} \text { Mid - II } \\ 25 \\ \hline \end{gathered}$	$\overline{A v g}$ 25	Q 5	A 5	CA 5	Total 40	Lab Internal 40
1	160622733001	0	09	9.5	3	5	5	22.5	33
2	160622733	23	24.5	24	5	5	5	39	38
3	160622733003	05	12	8.5	3	5	5	21.5	30
4	160622733004	08	11	$9 \cdot 5$	4	5	5	23.5	33
5	$\begin{array}{lllll}1606 & 22 & 733 & 005\end{array}$	24	21	22.5	4	5	5	36.5	39
6	160622733006	6	2	14	3.5	5	5	27.5	36
7	160622733007	13	10	11.5	3	5	5	24.5.	36
8	160622733008	23	21	22	$4 \cdot 5$	5	5	365	36
9	160622733009	21.	2.4	22.5	5	5	5	37.5	38
10	160622733010	4	21	17.5	3.5	5	5	31.	36
11	160622733011	5	21	18	4	5	5	32	35
12	160622733012	-	16	16.5	$3 \cdot 5$	5	5	30.	36
13	160622733013	21	10	15.5	H	5	5	$29 \cdot 5$	38
14	160622733014	3	16	14.5	4	5	5	28.5	32
15	160622733015	1	17	14	4	5	5	28	35
16	160622733016	$211 / 2$	18	2.0	4	5	5	34	37
17	160622733017	23	24.5	24	5	5	5	39	39
18	$1606 \quad 22733018$		17		4	5	5	31	34
19	160622733019		10	10.5	3	5	5	23.5	34
20	160622733020	2	8	10	3.5	5	5	23.5	36
21		8	18	18	3.5	5	5	31.5	37
22	160622733022	11	9	10	3	5	5	23	32
23	160622733023	24\%	$24.1 / 2$	24.5	5	5	5	39.5	39
24	160622733024	15	16	15.5	3.5	5	5	29.	32
25	160622733025	23	22	22.5	$4 \cdot 5$	5	5	37.	38
26	160622133026	06	05	5.5	3.5	5	5	19.	34
27	160622733027	21	20	20.5	4.5	5	5	35.	38
28	160622733028	18	15	16.5	3.5	5	5	30.	35
29	160622733029	24	23	23.5	5	5	5	38.5	35
30	$160622733 \quad 030$	22	12	17	4.5	5	5	31.5	36
31	160622733031	15	16	15.5	4	5	5	29.5	36
32	160622733032	23	18	20.5	$4 \cdot 5$	5	5	35.	38
33	$160622 \quad 1 \begin{array}{llllll}163 & 033\end{array}$	A14	14	14	4	5	5	28	32
34	$1 \begin{array}{lllll}1606 & 22 & 733 & 034\end{array}$	06	12	9	3.5	5	5	22.5	30
35	160622733035	18	13	15.5	4	5	5	29.5	30

Total No. of Students:	
No. of Students present:	63
No. of Students absent:	Faculty Name / Date:
Faculty Signature / Date:	
HOD Signature / Date:	

\square
IOr. V. Anuradha

Or. V. Anuradha

$$
\begin{aligned}
& \text { Academic ycar - 2022-202 } \\
& \text { B.E } 1^{\text {st }} \operatorname{ycar}\left(1^{\mu} \mathrm{scm}\right) \text {, c.S.E-B. }
\end{aligned}
$$

TEAM MEMBERS

AY: 2022-23, SemI, CSE-B
 \# Solar-Application project \#

Fider 2006

COLLEGE OF ENGINEERING A TECHNOLOGY FOR WOMEH

(Aa nituble COE dnurtes art iccrwitet by NEA 4 NAAC wth 'A' promel

B.E- II Sem - 1 Internal Examinations for the A.Y-2022-2023

Note:
Iaternal Fxamination (IIF) - FN-10.00-11.15AM/AN-01.30-02. 45PM
Quin (Q) - FN-11.20-11.30AM - $\mathrm{AN}-02 . \mathrm{So}-3.00 \mathrm{PM}$

C त्यात fratrd
Principal/COE:
Con blind:

CS
EE
EEE
II
HAS.

ADCT:

[^0]: Copy to HODs

