STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

Department of Electrical and Electronics Engineering

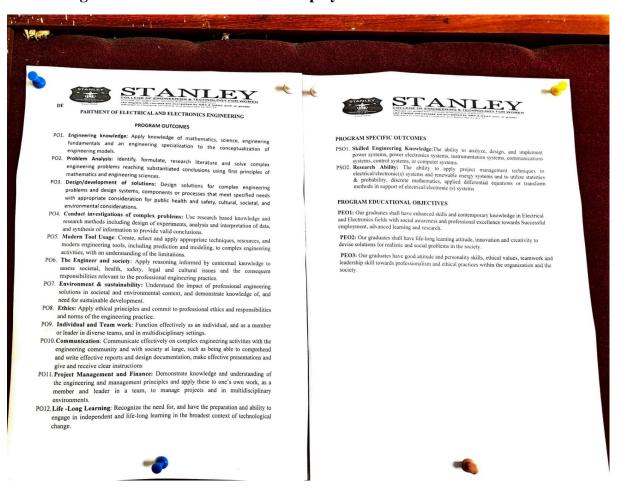
2.6.1 The institution has stated learning outcomes (programme and course outcome)/graduate attributes which are integrated into the assessment process and widely publicized through the website and other documents and the attainment of the same are evaluated by the institution.

> POs, PSOs PEOs

Department of Electrical & Electronics Engineering PROGRAM OUTCOMES

- PO1. **Engineering knowledge:** Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the conceptualization of engineering models.
- PO2. **Problem Analysis:** Identify, formulate, research literature and solve complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.
- PO3. **Design/development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- PO4. **Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select and apply appropriate techniques, resources, and modern engineering tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- PO6. **The Engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment & sustainability:** Understand the impact of professional engineering solutions in societal and environmental context, and demonstrate knowledge of, and need for sustainable development.
- PO8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions
- PO11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life -Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Department Of Electrical and Electronics Engineering

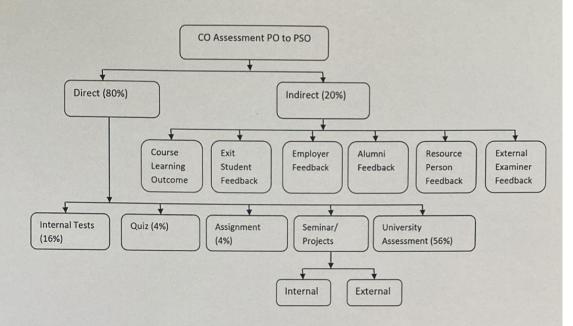

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

	Our graduates shall have enhanced skills and contemporary knowledge in Electrical and Electronics
PEO 1	fields with social awareness and professional excellence towards successful employment, advanced
ILO I	learning and research.
PEO 2	Our graduates shall have life-long learning attitude, innovation and creativity todevise solutions for
	realistic and social problems in the society.
PEO 3	Our graduates have good attitude and personality skills, ethical values, teamwork and leadership skill
	towards professionalism and ethical practices within the organizationand the society.

PROGRAM SPECIFIC OUTCOMES (PSOS)

	Skilled Engineering Knowledge: The ability to analyze, design, and implement power systems,
PSO 1	power electronic systems, instrumentation systems, communication systems, control systems, and
	computer systems.
	Research Ability: The ability to apply project management techniques to electrical/electronic (s) and
	renewable energy systems and to utilize statistics & and probability, discrete mathematics, applied
PSO 2	differential equations or transform methods in support of electrical/electronic (s) systems

Program Outcomes Notice Board Display



Stanley College of Engineering & Technology for Women

Chapel Road, Abids, Hyderabad (AUTONOMOUS)

Approved by AICTE, Affiliated to Osmania, Accredited by NBA & NAAC with "A" Grade

CO-PO Analysis Flow Chart

HODEFE HODEFE

HOD EEE Dr. Nagasekhara Reddy Naguru

Department of Electrical & Electronics Engineering Stanley College of Engg. & Tech. for Women Chapel Road, Abids, Hyderabad.

COURSE INFORMATION SHEET

COURSE NAME: MICROPROCESSORS AND

MICROCONTROLLERS

COURSE CODE: PC423EE

REGULATION: AICTE (ÚG)

PROGRAM / YEAR / SEMESTER: B.E VI SEM COURSE TYPE: CORE

COURSE AREA/DOMAIN: MICROPROCESSORS

CREDITS: 3

CONTACT HOURS: 3 HOURS/WEEK.

AY: 2022 - 23

CORRESPONDING LAB COURSE NAME, CODE (IF ANY): MICROPROCESSORS AND MICROCONTROLLERS

LAB (PC462EE)

PRE-REQUISITE COURSES/SEM/CODE: DIGITAL ELECTRONICS AND LOGIC DESIGN (PC410EE)

SYLLABUS:

UNIT	DETAILS	HOURS (LECTURE)
I	UNIT I - Microprocessor Architecture of 8086 - Segmented memory, Addressing modes, Instruction set, Minimum and maximum mode operations.	12
II	UNIT II – Introduction to Programming Assembly language programming, Assembler directives, Simple programs using assembler, Strings, Procedures, Macros timing.	11
ш	UNIT III – Interfacing to Microprocessor Memory and I/O interfacing, A/D and D/A interfacing, 8255(PPI), Programmable Internal Timer (8253), Keyboard and display interlace, Interrupts of 8086.	12
IV	UNIT IV – Microcontroller Architecture Types of Micro Controllers, 8051 MC – Architecture input/output pins, Ports and circuits, Internal and external memories, counters and timers, serial data input/output, Interrupts & timers.	11
v	UNIT V – Introduction to Programming Basic Assembly language programming, instruction cycle, Addressing modes, 8051 instruction set, Classification of instructions, Simple programs.	10
	TOTAL	56

TEXT/REFERENCE/ADDITIONAL BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLISHER
TI	1. Douglas, V. Hall microprocessors and Interfacing- Tata McGraw Hill-Revised 2nd Edition, 2017.
T2	2. Kenneth. J. Ayala – The 8051 Microcontroller Architecture Programming and Applications", Thomson publishers. 2nd Edition, 2007.
RI	3. Krishna Kant – microprocessors and Microcontrollers – Architeture, Programming and System Design 8085, 8086, 8051, 8096, Prentice-Hall india-2007.
R2	4. Waiter A. Triebel & Avtar Singh - The 8088 and 8086 Microprocessor - Pearson Publishers, 4th Edition, 2007.

WEB SOURCE REFERENCES: (Detailed Topic link)

	W1	https://www.youtube.com/watch?v=Xl2nWDcy0To
UNIT I	W2	https://www.youtube.com/watch?v=DmwOSdwzZ3E
	W3	https://nptel.ac.in/courses/108103157
	Wı	https://www.youtube.com/watch?v=iROUX8eYU38&list=RDCMUC-
UNIT II	WI	AyiLkoQSxTHN3zlThxg6w&index=2
	W2	https://nptel.ac.in/courses/108103157
	Wı	https://www.youtube.com/watch?v=gjq9fWku34U&list=RDCMUC-
UNIT III		AyiLkoQSxTHN3zlThxg6w&index=21
	W2	https://nptel.ac.in/courses/108103157
	Wı	https://www.youtube.com/watch?v=nfq_WaPGb6o&list=RDCMUC-
UNIT IV		AyjLkoQSxTHN3zlThxg6w&index=12
	W2	https://nptel.ac.in/courses/108105102
	W1	https://www.youtube.com/watch?v=6Q362E3Llgo&list=RDCMUC-
	.,,,	AyjLkoQSxTHN3zlThxg6w&index=35
UNIT V	W2	https://www.youtube.com/watch?v=3gl8RAEo40c&list=RDCMUC-
	***2	AyjLkoQSxTHN3zlThxg6w&index=21
	W3	https://nptel.ac.in/courses/108105102

COURSE OUTCOMES:

COURSE	DESCRIPTION	PO (1 – 12) MAPPING	PSO (1, 2) MAPPING	BLOOMS TAXONOMY LEVEL
PC423EE.1	Acquire the knowledge of architecture of 8086	1,2,3,4,5,11,12	1,2	Understand (Level 2)
PC423EE.2	Understanding the writing of assembly language programming for different applications	1,2,3,4,5,11,12	1,2	Apply (Level 3)
PC423EE.3	Analyse the interfacing of 8086 to different applications	1,2,3,4,5,11,12	1,2	Analyze (Level 4)
PC423EE.4	Understanding the architecture of 8051	1,2,3,4,5,11,12	1,2	Apply (Level 3)
PC423EE.5	Analyse the coding of 8051 for different problems	1,2,3,4,5,11,12	1,2	Analyze (Level 4)

(Course outcomes Minimum 4 Maximum 6)

COURSE OUTCOMES VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	2	2	1	2		111				1	1	2	1
2	3	1	1	1						1	2	3	1
2	2	2	1	2						1	2	2	2
3	2	2	1	2						1	2	3	2
3	2	2	1	1						2	2	3	1
2.4	2.2	1.8	1	1.6						1.2	1.8	2.6	1.4
	2 2 2 3 3 2.4	2 2 2 3 2 2 3 2 3 2 3 2 2.4 2.2	2 2 2 2 3 1 2 2 2 3 2 2 3 2 2 3 2 2 2.4 2.2 1.8	2 2 2 1 2 3 1 1 2 2 2 1 3 2 2 1 3 2 2 1 2.4 2.2 1.8 1	2 2 2 1 2 2 3 1 1 1 2 2 2 1 2 3 2 2 1 2 3 2 2 1 1 2.4 2.2 1.8 1 1.6	2 2 2 1 2 2 3 1 1 1 2 2 2 1 2 3 2 2 1 2 3 2 2 1 1 2.4 2.2 1.8 1 1.6	2 2 2 1 2 2 3 1 1 1 2 2 2 1 2 3 2 2 1 2 3 2 2 1 1 2.4 2.2 1.8 1 1.6	2 2 2 1 2 2 3 1 1 1 2 2 2 1 2 3 2 2 1 2 3 2 2 1 1 2.4 2.2 1.8 1 1.6	2 2 2 1 2 2 1 2 2 2 3 1 1 2 3 2 2 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 1 1	2 2 2 1 2 2 3 1 1 1 2 2 2 1 2 3 2 2 1 2 3 2 2 1 1 2.4 2.2 1.8 1 1.6	2 2 2 1 2 1 2 3 1 1 1 1 2 2 2 1 2 1 3 2 2 1 2 1 3 2 2 1 1 2 2.4 2.2 1.8 1 1.6 1.2	2 2 2 1 2 2 3 1 1 1 2 2 2 2 1 2 1 2 3 2 2 1 2 1 2 3 2 2 1 1 2 2 2 2 1 1 2 2 2.4 2.2 1.8 1 1.6 1.2 1.8	2 2 2 1 2 2 3 1 1 1 2 3 2 2 2 1 2 3 1 2 2 3 2 2 1 2 1 2 2 3 2 2 1 1 2 2 3 2.4 2.2 1.8 1 1.6 1.2 1.8 2.6

POs & PSO REFERENCE:

PO1	Engineering Knowledge	DO.			
PO2	Problem Analysis		Engineer & Society	PO11	Project Management & Finance
PO3	Design & Development	PO7 PO8	Environment & Sustainability	PO12	Life Long Learning
PO4	Investigations		Ethics		0
PO5	Modern Tools	PO10	Individual & Team Work Communication Skills		Skilled Professional
CID	O Val muse			1002	Research Capability

GAPS IN THE SYLLABUS - TO MEET COs, POs & PSOs:

SNO	GAP	PROPOSED	PROPOSED	CO	122
1	8085 Architecture	ACTIONS	RESOURCE	CO	PO / PSO
		Advise	NPTEL Lectures	1	1,2,3,4,11,12/1,3
	Explanation about 80186, 80286, 80386,	Advise	NPTEL Lectures	2	1.2.3.4 11 12/1

TOPICS BEYOND SYLLABUS: Additional course material / learning material / Lab Experiments / Projects

S.No	Description	P. C.	
1	Differences between 8085, 8086 and latest computers	co	PO/PSO
2	Writing a A1 P to find out 1 CM	1	PO1,PO2,PO3,PSO1,PSO2
3	Writing a ALP to find out LCM and GCD of given numbers	2	PO1,PO2,PO3,PSO1,PSO2
4	Interfacing of stepper motor in both directions	3	PO1,PO2,PO3,PSO1,PSO2
	Role of microcontroller in embedded systems	4	PO1,PO2,PO3,PSO1,PSO2
3	PIC Microcontroller programming	5	PO1,PO2,PO3,PSO1,PSO2

Innovation / Pedagogical Initiatives to cater Weak & Advanced Learners: Multimedia Learning Process, Mind Map, Z to A approach, Lecture method & Interactive Learning, Project based learning, Computer assisted Learning, Smart Class Room.

INSTRUCTIONAL METHODOLOGIES:

REAL WORLD EXAMPLES	COLLABORATIVE LEARNING	QUALITY LAB EXPERIMENTS	OBSERVATIONS RECORDED
INDUSTRY INTERNSHIP	SUMMER TRAINING	EXPERT GUEST LECTURES	PROJECTS
USE OF ICT	ANY OTHER (SPECIFY)	v	

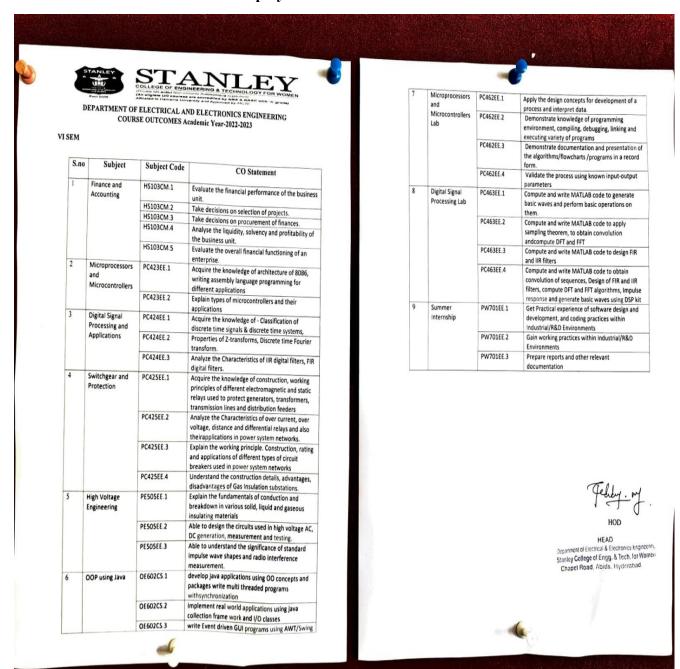
ASSESSMENT METHODOLOGIES-DIRECT

EXAM QUESTIONS	TUTORIAL QUESTIONS	ASSIGNMENTS	LABORATORY TESTS
PROJECT EVALUATION	STUDENT ARTIFACTS	ORAL EXAMS	PROJECT PRESENTATIONS
INTERNALLY DEVELOPED EXAMS	ANY OTHER (SPECIFY)		

ASSESSMENT METHODOLOGIES-INDIRECT

STUDENT EXIT SURVEY

CO-CURRICULAR ACTIVITIES


EXTRA CURRICULAR ACTIVITIES

Prepared by (Dr. Nagasekhara Reddy Naguru)

HEAD

Department of Electrical & Electronics Engineering
Stanley College of Engg. & Tech. for Women
Chapel Road, Abids, Hyderabad

Course Outcomes Notice Board Display

➤ MID Question paper with Bloom's Taxonomy and CO-PO Mapping

(i.) ENDM

(ii.) SHORT

Stanley College of Engineering & Technology for Women Chapel Road, Hyderabad

VI - Semester BE- EEE I-Mid Examinations - 03rd May 2023

MICROPROCESSORS & MICROCONTROLLERS

[Max. Marks: 20] [Time: 2:00 PM - 3:00 PM] SET 2 Note: 1) Answer all questions of Part-A 2) Answer any two questions from Part-B PART-A (6 Marks) (2) 1. Discuss the function of M/IO in 8086? (2) What is meant by "MACRO" in assembly language programming? (2) Indicate the addressing modes of the following instruction: (a.) MOV DL, AF h (b.) MOV CL, [BX] PART-B (14 Marks) (5) (a.) Draw the architecture of 8086 microprocessor and explain it in detail? (2) (b.) Explain about Arithmetic instructions in detail? 5. (a.) Write an assembly language program to multiply two 8-bit signed numbers? Explain with one example? (5) (b.) Explain the following 8086 directives

(a.) Explain about 8086 addressing modes? (5)(b.) What are the differences between "PROCEDURE" and "MACRO"? (2)

***** Paper set by Dr. Nagasekhara Reddy Naguru

(2)

CO & PO mapping and Bloom's Taxonomy

Question	Q1	Q2	Q3	Q4	Q5	Q6
Course Outcome	COI	CO2	CO1	CO1	CO2	CO1, CO2
Bloom's Taxonomy	Understanding	Remember	Knowledge	Knowledge & Remember	Apply & Knowledge	Knowledge & Understanding

Stanley College of Engineering & Technology for Women

Chapel Road, Hyderabad

VI - Semester BE- EEE II-Mid Examinations - 07th August 2023

MICROPROCESSORS & MICROCONTROLLERS

[Time: 10:00 AM - 11:00 AM]

[Max. Marks: 20]

SET 2 Note: 1) Answer all questions of Part-A 2) Answer any two questions from Part-B PART-A (6 Marks) (2) 1. Write the differences between Microprocessors and Microcontrollers? (2)2. List the various special function registers in 8051 Microcontroller? (2)3. List out the various addressing modes of 8051 Microcontroller? PART-B (14 Marks) (3) 4. (a.) Explain the different modes of operation of 8255 PPI? (4) (b.) Explain the different modes of operation of 8253 PIT? 5. (a.) Draw the pin configuration of 8051 Microcontroller and explain the function of (5) each pin in detail? (2) (b.) Explain the difference between JUMP and CALL? 6. (a.) Explain the port operation of 8051 Microcontroller? (3) (b.) Write an assembly language program to find the minimum number in an array of ten (4) 8-bit numbers of an 8051 Microcontroller?

***** Paper set by Dr. Nagasekhara Reddy Naguru

CO & PO mapping and Bloom's Taxonomy

Course Outcome	CO4	CO5	CO5	CO3	CO4	CO5
Bloom's Taxonomy	Understanding	Knowledge	Remember	Knowledge & Remember	Understanding & Knowledge	Knowledge & Apply

> Quiz Paper with Blooms Taxonomy

Name: SADIA BLOWM Roll No: 160620734022
Stanley College of Engineering & Technology for Women
Chapel Road, Hyderabad
VI – Semester BE- EEE I-Mid Examinations – 03 rd May 2023
MICROPROCESSORS & MICROCONTROLLERS
[Time: 03:00 PM - 03:10 PM] [Max. Marks: 5]
Each question is of 0.5 marks.
1. 33rd pin of 8086 descries MN/MX (manimum/minimum Pin)
2. The number of address lines of 8086 processor is 20
3. Write an example of 8086 register indirect addressing mode MOV AX 2 [BX]
4. For BCD addition, which instruction can be used?
(a.) ADD (b.) AAA (c.) DAA (d.) ADC
5. What is meant by instruction XLAT Translating the instruction
6. What is meant by the directive DB Double byte
7. How to set carry flag to 1 By Compare
8. What is the physical address of 076A:2345h TNT 3
9. What is meant by the directive ENDS ending a segment
10. 8086 is a 16-bit processor
(a.) 8-bit processor (b.) 16-bit processor
(c.) 20-bit processor (d.) 32-bit processor

CO & BLOOMS TAXONOMY MAPPING

Question	1	2	3	4	5
Course Outcome	CO1	CO1	CO1	CO1	CO1
Blooms Taxonomy	Knowledge	Understanding	Remember	Knowledge	Remember
Question	6	7	8	9	10
Course Outcome	CO2 .	CO2	CO2	CO2	CO1
Blooms Taxonomy	Knowledge	Understanding	Application	Knowledge	Remember

Roll No: 160620734306

Stanley College of Engineering & Technology for Women

Chapel Road, Hyderabad

VI - Semester BE- EEE II-Mid Examinations - 07th August 2023

MICROPROCESSORS & MICROCON

MICROPROCESSORS & MICROCONTROLLERS
[Time: 11:00 AM – 11:10 AM] [Max. Marks: 5]
Each question is of 0.5 marks
1. The MSB value of Control Word Register of 8255 is to operate in I/O Mode.
2. How many counters/timers are present in 8253 PIT?
(a.) 1 (b.) 2 (c.) 3 (d.) 4
3. Memory interfacing of 8086 requires 8255 PPI. Is it True/False ? 4. 8051 is a?
(a) 8-bit Microcontroller (b.) 16-bit Microcontroller
(c.) 20-bit Microcontroller (d.) 32-bit Microcontroller
5. What are the sizes of internal RAM and ROM of 8057
(a.) 4 KB and 128 Bytes respectively
(c.) 128 Bytes and 128 Bytes respectively (d.) 4 KB and 4 KB respectively
6. How many internal ports and timers are present in 8051?
(a.) 4 and 3 respectively (b.) 2 and 4 respectively
(c) 4 and 2 respectively (d.) 4 and 4 respectively
(a.) 8 Address lines (b.) 16 Address lines (c.) 20 Address lines (d.) 12 Address lines
(a.) 8 Address lines (45) 10 Address mode.
8. MOV A, GRO IS an example of Configuration (c) Direct Register indirect
(a.) Immediate (b.) Register (c.) Direction of the data from external memory location to register? 9. Which instruction can be used to transfer the data from external memory location to register?
9. Which instruction can be used to transfer the MOVE (d.) MOVP
(a) MOV
10. 8051 Microcontroller operating frequency is 12 M H 3

CO & BLOOMS TAXONOMY MAPPING

	1	2	3	4	45
Question			002	CO4	CO4
Course Outcome	CO3	CO3	CO3		
	Knowledge	Understanding	Remember	Knowledge	Remember
Blooms Taxonomy	Knowledge			9	10
Question	6	7	8		
	CO4	CO4	CO5	CO5	CO5
Course Outcome	004			Knowledge	Remember
Blooms Taxonomy	Knowledge	Understanding	Application	Knowledge	1

> Course showing all Course Objectives and Course Outcomes

DEPAR

TMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OUTCOMES Academic Year-2022-2023

IV SEM

S.no	Subject	Subject Code	CO Statement
1	Effective Technical	SHS401EG.1	To understand the process and barriers of communication
	Communication	SHS401EG.2	To learn the aspects of communication and presentation.
		SHS401EG.3	To comprehend the types of business correspondence
		SHS401EG.4	To analyze the techniques of report writing
		SHS401EG.5	To get the knowledge of basics of manual writing
2	Electrical	SPC401EE.1	Understand the concepts of magnetic circuits
	Machines I	SPC401EE.2	Understand electrical principle, laws, and working of DC machines.
		SPC401EE.3	Analyse the construction and characteristics and application of various types of DC generators.
		SPC401EE.4	Analyse the construction and characteristics and application of various types of DC motors and testing of motors.
		SPC401EE.5	Understand electrical principle, laws, and working of transformer and losses and also conduct various tests on the transformer.
3	Control Systems	SPC402EE.1	Understand the concept of the terms control systems, feedback, Mathematical modeling of Electrical and Mechanical systems.
		SPC402EE.2	Explain the time domain and frequency response analysis of control systems.
		SPC402EE.3	Acquire the knowledge of various analytical techniques used to determine the stability of control systems.
		SPC402EE.4	Able to understand the importance of design of compensators
		SPC402EE.5	Able to demonstrate controllability and observability of modern control systems.
4	Switching Theory and	SPC403EE.1	understand and apply the Boolean algebra, including CMOS gates and arithmetic circuits.
	Logic Design	SPC403EE.2	apply combinational digital circuits for logic functions
		SPC403EE.3	use the concepts of Boolean Algebra for the analysis & design of sequential logic circuits
		SPC403EE.4	design various A/D and D/A converters
		SPC403EE.5	design various logic gates starting from simple ordinary gates to complex programmable logic

			devices and arrays.
	OOP Using	SPC901CS.1	To introduce fundamental object-oriented
J	AVA		concepts of Java programming Language such
			as classes, inheritance, packages and interface
		SPC901CS.2	To introduce concepts of exception handling
			and multi-threading
		SPC901CS.3	To use various classes and interfaces in java
		51 070105.5	collection framework and utility classes
		SPC901CS.4	To understand the concepts of GUI
		3PC901C3.4	
			programming using AWT controls
		SPC901CS.5	To introduce Java I/O streams and serialization
	Electrical	SPC411EE.1	Estimate the efficiency and voltage regulation
100	Machines – 1 Lab	SPC411EE.2	of D.C. generator and transformers under various loading conditions
		SPC411EE.3	Acquire the knowledge of efficiency and speed
		or Childen	regulation D.C. Motors under various loading
			conditions.
		SPC411EE.4	Able to understand the speed control of DC
			motor by conducting different experiments
		SPC411EE.5	Analyze the transformer performance by
			performing different tests.
7 (Control Systems	SPC412EE.1	Understand the concept of the terms control
	ab		systems, feedback, Mathematical modeling of
			Electrical and Mechanical systems.
		SPC412EE.2	Explain the time domain and frequency
		SI CHIZEE.Z	response analysis of control systems.
		SPC412EE.3	Acquire the knowledge of various analytical
		SPC412EE.3	
			techniques used to determine the stability of
			control systems
		SPC412EE.4	Able to understand the importance of design o
			compensators
		SPC412EE.5	Able to demonstrate controllability and
			observability of modern control systems
8 S	Switching	SPC413EE.1	Understand working of logic families and logi
	Theory and		gates
	ogic Design	SPC413EE.2	Design and implement Combinational and
	ab	51 C+13111.2	Sequential logic circuits
1	au	CDC412EE 2	Understand the process of Analog to Digital
		SPC413EE.3	
		anguiere :	conversion and Digital to Analog conversion.
		SPC413EE.4	Use PLCs to implement the given logical
		800800000000000000000000000000000000000	problem
		SPC413EE.5	Analyze synchronous and asynchronous
			counters
9	Internship-I	SPW511EE.1	Design/develop a small and simple product in
	T T	175 To 1865 (1750)	hardware or software
		SPW511EE.1	Complete the task or realize a pre-specified
			target, with limited scope, rather than taking
			up a complex task and leave it.
		CDW511EE 1	
		SPW511EE.1	Learn to find alternate viable solutions for a
			given problem and evaluate these alternatives
			with reference to pre-specified criteria.
		SPW511EE.1	Implement the selected solution and document
		DI WOITED.I	the same
		SPW511EE.1	
		SPW311EE.1	Able to write a technical report and present it
l l		I	to appropriate audience.

Course		Core/Elective						
Code								
PC423EE		(Common to EEE and EIE						
Prerequisite	L	L T D P CIE SEE						
-	3	0	0	0	30	70	3	

Course Objectives

To be able to understand in details about 8086 microprocessor architecture, programming and interfacing To be able to understand about 8051 microcontroller architecture, and programming

Course outcomes

At the end of the course students will be able to

Acquire the knowledge of architecture of 8086, writing assembly language programming for different applications Explain types of microcontrollers and their applications

UNIT-I

Microprocessor: Architecture of 8086 - Segmented memory, Addressing modes, Instruction set, Minimum and maximum mode operations.

Introduction to Programming: Assembly language programming, Assembler directives, Simple programs using assembler, Strings, Procedures, Macros timing.

Interfacing to Microprocessor: Memory and I/O interfacing, A/D and D/A interfacing, 8255(PPI), Programmable Internal Timer (8253), Keyboard and display interlace, Interrupts of 8086.

UNIT-IV

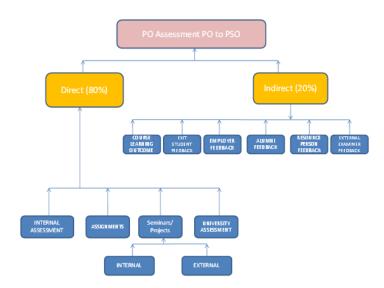
Micro Controller Architecture: Types of Micro Controllers, 8051 MC - Architecture input/output pins, Ports and circuits, Internal and external memories, counters and timers, serial data input/output, Interrupts & timers.

Introduction to Programming: Basic Assembly language programming, instruction cycle, Addressing modes, 8051 instruction set, Classification of instructions, Simple programs.

- Suggested Reading: 1. Douglas, V. Hall microprocessors and Interfacing- Tata McGraw Hill-Revised 2^{nd} Edition, 2017.
- 2. Krishna Kant microprocessors and Microcontrollers Architeture, Programming and System Design 8085, 8086, 8051, 8096, Prentice-Hall india-2007.
- 3. Kenneth. J. Ayala The 8051 Microcontroller Architecture Programming and Applications", Thomson publishers, 2nd Edition, 2007.
- Waiter A. Triebel & Avtar Singh The 8088 and 8086 Microprocessor Pearson Publishers, 4th Edition, 2007.

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN Chapel Road, Abids, Hyderabad. DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

PROGRAM OUTCOMES


- PO1. **Engineering knowledge:** Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the conceptualization of engineering models.
- PO2. **Problem Analysis:** Identify, formulate, research literature and solve complex engineering problems reaching substantiated conclusions using first principles of mathematics and engineering sciences.
- PO3. **Design/development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- PO4. **Conduct investigations of complex problems:** Conduct investigations of complex problems including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select and apply appropriate techniques, resources, and modern engineering tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- PO6. **The engineer and society**: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- PO7. **Environment & sustainability:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO8. **Ethics**: Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.
- PO9. **Individual and Team work**: Understand and commit to professional ethics and responsibilities and norms of engineering practice.
- PO10. **Communication**: Understand the impact of engineering solutions in a societal context and demonstrate knowledge of and need for sustainable development.
- PO11. Project Management and Finance: Demonstrate a knowledge and understanding of management and business practices, such as risk and change management, and understand their limitations.
- PO12. **Lifelong Learning**: Recognize the need for, and have the ability to engage in independent and life-long learning

PROGRAM SPECIFIC OUTCOMES

PSO 1.Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for the benefit of students.

PSO2. Design,implement,test,and evaluate a computer system,component,or algorithm to meet desired needs and to solve a computational problem.

Flow chart

Stanley College of Engineering and Technology for Women Chapel Road, Abids, Hyderabad – 500 001

Department of Computer Science and Engineering V SEM (A.Y- 22-23)

Name of the Course/lab	UNIQUE CODE	COURSE OUTCOMES
	PC501CS.1	Acquired working knowledge of alternative approaches and techniques for each phase of software development
	PC501CS.2	Acquired working knowledge of alternative approaches and techniques for each phase of software development
	PC501CS.3	Acquire skills necessary as an independent or as part of a team for completing a project
SOFTWARE ENGINEERI NG(PC501C	PC501CS.4	Acquire skills necessary as an independent or as part of a team for completing a project
s)	PC501CS.5	Concede product quality through testing techniques employing appropriate metrics by understanding the practical challenges associated with the development of a significant software system
PRINCIPLE S OF	PC502CS.1	Ability to express syntax and semantics in formal notation
PROGRAM MING LANGUAGE	PC502CS.2	Ability to apply suitable programming paradigm for the application
S(PC502CS)	PC502CS.3	Gain Knowledge and comparison of the features programming languages. Program in different language paradigms and evaluate their relative benefits
	PC502CS.4	Identify and describe semantic issues associated with variable binding, scoping rules, parameter passing, and exception handling.
	PC502CS.5	Understand the design issues of object-oriented and functional languages.
AUTOMAT	PC503CS.1	To define and analyze the Deterministic and Nondeterministic Finite Automata and automata with output for any given language
A LANGUAGE & COMPUTA TION(PC503	PC503CS.2	To solve the problems relating context free languages and machines accepted by CFG.
CS)	PC503CS.3	To identify formal language classes and membership properties of languages.

	PE515CS.5	Assess the solutions, Use K-means clustering and K-NN classification method Reading data from MySQL and NoSQL databases.
SOFTWARE ENGINEERI NG	PC551CS.1	Analyze and design software requirements in an efficient manner.
LAB(PC551 CS)	PC551CS.2	Use open-source case tools to develop software.
	PC551CS.3	Implement the code
	PC551CS.4	Design and debug the code
	PC551CS.5	Make test cases and test the code
ARTIFICIA L INTELLIGE NCE	PC552CS.1	Design and develop solutions for informed and uninformed search problems in Al
LAB(PC552 CS)	PC552CS.2	Demonstrate reasoning in first order logic using Prolog.
	PC552CS.3	Utilize advanced package like NLTK for implementing natural language processing.
	PC552CS.4	Demonstrate and enrich knowledge to select and apply python libraries to synthesize information and develop supervised learning models
	PC552CS.5	Develop a case study in multidisciplinary areas to demonstrate use of AI
	PC553CS.1	Implement Various commands
	PC553CS.2	Implement various protocols using TCP and UDP
COMPUTE R NETWORK	PC553CS.3	Program using sockets.
LAB(PC553 CS)	PC553CS.4	Use simulation tools to analyze the performance of various network protocols.
	PC553CS.5	Implement and Analyze various routing algorithms.

	PC503CS.4	To solve the problems related to Turing Machines
	PC503CS.5	To acquire a fundamental understanding of core concepts relating to the theory of computation and computational models including (but not limited to) decidability and intractability
	PE512CS.1	Formalize a problem in the language/framework of different AI methods
	PE512CS.2	Illustrate basic principles of AI in solutions that require problem solving, search inference.
	PE512CS.3	Represent natural language/English using Predicate Logic to build knowledge through various representation mechanisms
ARTIFICIA L INTELLIGE	PE512CS.4	Demonstrate understanding of steps involved in building of intelligent agents, expert systems, Bayesian networks.
NCE(PE512 CS)	PE512CS.5	Differentiate between learning paradigms to be applied for an application.
	PC505CS.1	Understanding Data communication Components ,and Techniques for Bandwidth Utilization.
	PC505CS.2	Investigating the reference model of Data link Layer and analyzing Flow control and error control techniques, and Protocols.
	PC505CS.3	Understanding different switching techniques, and differences of IPV4 and IPv6 header
COMPUTE		,InternetControl Protocol, and Network routing Algorithm.
R NETWORK(PC505CS)	PC505CS.4	Analyzing Process-to process communication using Transport Layer, and Understanding Congestion control, and quality of Service Techniques.
	PC505CS.5	Analyze and understand the working of application Layer such as DNS, mail, file transfer and Cryptography and Network security Attacks
	PE515CS.1	Understand the mathematical background for Data science
	PE515CS.2	Assess and analyze the statistics of the data
DATA SCIENCE(P E515CS)	PE515CS.3	Use linear, non-linear regression models, and classification techniques for data analysis.
	PE515CS.4	Develop R codes for data science solutions

Stanley College of Engineering and Technology for Women Chapel Road, Abids, Hyderabad – 500 001

Department of Computer Science and Engineering VII SEM (A.Y- 22-23)

Name of the Course/lab	UNIQUE CODE	COURSE OUTCOMES
	PC701CS.1	Define the steps in Security Systems development life cycle(SecSDLC). Understand the common threats and attack to information systems.
	PC701CS.2	Understand the legal and ethical issues of information technology Identify security needs using risk management and choose the appropriate risk control strategy based on business needs.
	PC701CS.3	Use the basic knowledge of security frameworks in preparing security blue print for the organization. Usage of reactive solutions, network perimeter solution tools such as firewalls, host solutions such as antivirus software and Intrusion Detection techniques and knowledge of ethical hacking tools.
	PC701CS.4	Understand and apply various cryptographic algorithms and to create their own algorithm. Use ethical hacking tools to study attack patterns and cryptography and secure communication protocols.
INFORMATI ON SECURITY(PC701CS) PC701CS.5		Understand the technical and non-technical aspects of security project implementation and accreditation. Design and prepare the industry recognized cyber security certifications and able to maintain the information security
	PC702CS.1	Define the steps in Security Systems development life cycle(SecSDLC). Understand the common threats and attack to information systems.
	PC702CS.2	Understand the legal and ethical issues of information technology Identify security needs using risk management and choose the appropriate risk control strategy based on business needs.
	PC702CS.3	Use the basic knowledge of security frameworks in preparing security blue print for the organization. Usage of reactive solutions, network perimeter solution tools such as firewalls, host solutions such as antivirus software and Intrusion Detection techniques and knowledge of ethical hacking tools.
DATA	PC702CS.4	Understand and apply various cryptographic algorithms and to create their own algorithm. Use ethical hacking tools to study attack patterns and cryptography and secure communication protocols.
SCIENCE USING R PROGRAM MING(PC702 CS)		Understand the technical and non-technical aspects of security project implementation and accreditation. Design and prepare the industry recognized cyber security certifications and able to maintain the information security

	PC703CS.1	List the principles of distributed systems and describe the problems and challenges associated with these principles
		To know about interposes communication and remote communication.
	PC703CS.2	Understand Distributed Computing techniques, Synchronous and Processes.
	PC703CS.3	
		Understand Distributed File Systems Apply Distributed web-based system. Understand the
DISTRIBUT	PC703CS.4	importance of security in distributed systems
ED SYSTEMS(P	PC703CS.5	Student will be able to know distributed service oriented architecture and to know about emerging trends in distributed computing.
C703CS)	rc/03Cs.5	Understand the various applications of IOT and other enabling technologies
	OE701EC.1	Communication technologies weed in IOT
	OE701EC.2	Comprehend various protocols and communication technologies used in IOT
		Design simple IOT systems with requisite hardware and C programming software
	OE701EC.3	Understand the relevance of cloud computing and data analytics to IOT
FUNDAMEN	OE701EC.4	
TAL OF IOT(OE701E C)	OE701EC.5	Comprehend the business model of IoT from developing a prototype to launching a product.
	O D / O I D C I D	Write programs that communicate data between two hosts
	PC751CS.1	2 February States and
	PC751CS.2	Configure NFS
		To implement inter process communication and remote communication
DATA	PC751CS.3	
SCIENCE LAB(PC751C S)	PC751CS.4	Use distributed data processing frameworks and mobile application tool kits
		Write programs that communicate data between two hosts
	PC752CS.1	Configure NFS
DISTRIBUT ED	PC752CS.2	
SYSTEMS LAB(PC752C S)	PC752CS.3	To implement inter process communication and remote communication

	PC752CS.4	Use distributed data processing frameworks and mobile application tool kits
	PW761CS.1	Demonstrate the ability to synthesize and apply the knowledge and skills acquired in the academic program to the real-world problems.
	PW761CS.2	Evaluate different solutions based on economic and technical feasibility
	PW761CS.3	Effectively plan a project and confidently perform all aspects of project management
PROJECT WORK(PW7 61CS)	PW761CS.4	Demonstrate effective written and oral communication skills

STANLEY COLLEGE OF ENGINEERING ATECHNOLOGY FOR WO

Engineering

Courte Outcome Attainment

Courte Outcome Attainment

GHOUSTA BEGUM
Academic Ye 2022-23

CSE-2
Engineering
Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Engineering

Eng

Target 16" 6016

Man 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Marks = 100,000 (100,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1,5 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 1	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 9 55 2 4 2 6 3 0 5 4 4 6	5 7 1 7 1 7 1 7 1 7 1 1 2 6 6 6 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2 3 6 7 13 13 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1606.20733084 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 55 2 4 2 6 2 3 0 5 4	6 6 6 7	6 8.0 6 8.0 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2 3 6 7 13 13 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1606.20733084 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094 1606.20733094	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5 5 4 4 4	6 6 6 7	6 8.0 6 8.0 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1606.207.33082 1606.207.33093 1606.207.33093 1606.207.33094 1606.207.33094	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5 5 4 4 4	6 6 6 7	8 5 5 6 3 6 6 5 5 5 4 2 2 6 4 4 5 5 6 6 6 6 6 4 4 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	8 5 5 6 3 6 6 5 5 5 4 2 2 6 4 4 5 5 6 6 6 6 6 4 4 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3306. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3307. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308. 1606.207.3308.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	\$ 4 8 8 5 6 6 6 5 5 5 4 4 6 6 7 2 8 4 4 6 6 6 6 6 6 6 6 6 7 2 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1606 207 3 106 106 207 3 106 106 207 3 106 106 207 3 106 106 207 3 106 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 107 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 108 106 207 3 109 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	3 6 5 5 6 6 5 5 5 4 4 6 6 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1806 2073 106- 1806 2073 106- 1806 2073 106- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 107- 1806 2073 108- 1806 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	3 6 5 5 6 6 5 5 5 4 4 6 6 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1006.207.3106.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3307.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3308.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1 1006.207.3309.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	5 5 6 5 5 5 5 5 5 6 6 7 4 4 6 6 7 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
110 111 112 113 114 115 117 118 119 119 119 119 119 119 119 119 119	1606-20733081 1606-20733072 1606-20733073 1606-20733073 1606-20733073 1606-20733073 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733081 1606-20733091 1606-20733094 1606-20733094 1606-20733094 1606-20733094	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 2	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	5 6 3 6 5 5 5 4 2 6 4 6 6 4 4 6 6 4 4 4 5 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
10 11 12 13 13 14 15 16 17 18 11 15 16 17 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 18	1606.2073301 1606.2073307 1606.2073307 1606.2073307 1606.2073307 1606.2073307 1606.2073307 1606.2073307 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073308 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309 1606.2073309	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 2	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	6 5 5 5 5 5 6 4 2 2 4 4 6 6 4 6 7 6 6 4 6 7 6 6 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
13 12 13 13 14 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1606.2073.004 1606.2073.007 1606.2073.007 1606.2073.007 1606.2073.007 1606.2073.007 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.008 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009 1606.2073.009	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 2	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	6 5 5 5 5 5 6 4 2 2 4 4 6 6 4 6 7 6 6 4 6 7 6 6 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1606.207330.1 1606.207330.7 1606.207330.7 1606.207330.7 1606.207330.7 1606.207330.7 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.8 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9 1606.207330.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 2	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	5 5 5 6 4 2 2 6 4 6 6 7 5 6 6 4 7 6 7 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1606.507.330.1 1606.207.330.7 1606.207.330.7 1606.207.330.7 1606.207.330.7 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.8 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9 1606.207.330.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 2 2 2 2 2 2 2	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 3 0 5 4	6 6 6 7	5 5 5 6 4 2 2 6 4 6 6 7 5 6 6 4 7 6 7 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
14 1.5 1.6 1.7 17 17 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1606.2073.007. 1606.2073.007. 1606.2073.007. 1606.2073.007. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.008. 1606.2073.009. 1606.2073.009. 1606.2073.009. 1606.2073.009. 1606.2073.009. 1606.2073.009. 1606.2073.009.	2 2 2 2 1 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2	2 2 2 2 2 2 2	2 3 0 5 4	6 6 6 7	6 4 6 2 4 4 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
19 10 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1606.2071.07.1 1606.2071.07.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	2 3 0 5 4	6 6 6 7	6 4 6 2 4 4 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
117 118 119 119 119 120 120 121 121 121 121 121 121 121 121	1606.2071.07.1 1606.2071.07.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.08.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1 1606.2071.09.1	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	2 3 0 5 4	6 6 6 7	2 4 4 6 4 5 6 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
18 (10) (10	1606.2073.081 1606.2073.081 1606.2073.081 1606.2073.083 1606.2073.084 1606.2073.084 1606.2073.085 1606.2073.085 1606.2073.085 1606.2073.089 1606.2073.090 1606.2073.091 1606.2073.093 1606.2073.094 1606.2073.094 1606.2073.094 1606.2073.094	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	2 3 0 5 4	6 6 6 7	6 4 6 4 5 6 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
18 (10) (10	1606.2073.081 1606.2073.081 1606.2073.081 1606.2073.083 1606.2073.084 1606.2073.084 1606.2073.085 1606.2073.085 1606.2073.085 1606.2073.089 1606.2073.090 1606.2073.091 1606.2073.093 1606.2073.094 1606.2073.094 1606.2073.094 1606.2073.094	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	2 3 0 5 4	6 6 6 7	4 6 2 4 4 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
100 100 100 100 100 100 100 100 100 100	1606.20733080 1606.20733083 1606.20733083 1606.20733085 1606.20733086 1606.20733086 1606.20733086 1606.20733090 1606.20733090 1606.20733093 1606.20733093 1606.20733093 1606.20733093 1606.20733093 1606.20733094 1606.20733095	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	3 0 5 4	3 6 6 1 7	4 6 2 4 4 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
200 11 12 12 12 12 12 12 12 12 12 12 12 12	160620733081 160620733083 160620733084 160620733086 160620733086 160620733089 160620733090 160620733091 160620733094 160620733094 160620733094 160620733094 160620733094	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	3 0 5 4	8 6 1 7	6 2 4 4 6 4 5 6 6 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1606.20733083 160620733083 160620733084 160620733086 160620733088 160620733080 160620733091 160620733091 160620733091 160620733094 160620733094 160620733094 160620733094	2 0 2 0,5	2 2 2	2 2 2 2 2 2 2	3 0 5 4	8 6 1 7	2 4 4 6 4 5 6 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
20 20 24 25 26 27 28 29 20 33 44 55 66 77 78	160620733083 160620733085 160620733086 160620733086 160620733089 160620733089 160620733090 160620733093 160620733093 160620733093 160620733093 160620733095 160620733095	2 0 2 0,5	2 2 2	1 2 2 2 2 2	3 0 5 4	7	4 4 6 4 5 6 6 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5
20 20 20 20 20 20 20 20 20 20 20 20 20 2	160620733084 160620733085 160620733085 160620733087 160620733089 160620733090 160620733093 160620733094 160620733094 160620733094 160620733094 160620733094	2 0 2 0,5	2 2 2	1 2 2 2 2 2	3 0 5 4	7	4 4 6 4 5 6 6 6 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5
8 9 0 1 1 1 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	160620733086 160620733088 160620733088 160620733080 160620733090 160620733090 160620733091 160620733094 160620733094 160620733095 160620733095	2 2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	3 0 5 4	3	4 6 4 5 6 6 6 4 5	5 5 5 5 5 5 5 5 5 5
1 1 2 2 3 3 4 4 5 5 6 5 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	160620733086 160620733088 160620733088 160620733089 160620733090 160620733093 160620733093 160620733093 160620733095 160620733095 160620733095	2 2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	3 0 5 4		6 4 5 6 6 4 5	5 5 5 5 5 5 5 5 5
7 8 9 9 0 1 1 1 2 2 3 3 4 4 5 5 5 7 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	160620733087 160620733088 160620733090 160620733091 160620733093 160620733093 160620733094 160620733095 160620733095	2 2 2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	0 5 4		5 6 6 4 5	5 5 5 5 5 5 5 5
3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	160620733088 160620733099 160620733091 160620733091 160620733093 160620733093 160620733095 160620733095 160620733095	2 2 2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	0 5 4		5 6 6 4 5	5 5 5 5 5 5 5
3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	169620733089 169620733090 169620733091 169620733093 169620733094 169620733095 169620733096 169620733097	2 2 2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	4		6 6 4 5	5 5 5 5 5 5
3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	160620733090 160620733091 160620733093 160620733093 160620733094 160620733095 160620733095	2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	4		6 6 4 5	5 5 5 5 5
	160620733091 160620733092 160620733093 160620733094 160620733095 160620733097	2 2 2 2 2 2 2 2	2 2 2	1 2 2 2 2 2	4		6 6 4 5	5 5 5 5
	160620733093 160620733093 160620733094 160620733095 160620733095 160620733097	2 2 2 2 2 2 2	2 2 2	2 2 2 2 2	4		6 4 5	5 5 5
	160620733093 160620733094 160620733095 160620733097	2 2 2	2 2	2 2 2 2			6 4 5	5 5
5	160620733094 160620733095 160620733095 160620733097	2 2 2	2	2 2 2			5	5
	160620733095 160620733096 160620733097	2 2 2		2			5	5
	160620733096 160620733097	2		2	0	_		
	160620733097	2						
		2	100			7		5
			-	2		7	5	5
	160620733098	2	-	-	_	-	3.0	5
	160620733099	2	2	2	_	7	7	5
	160620733100	2	2	2	_	7	4	5
	160620733101 160620733102	2	2	2	6	4	6	5
		2	2	2	0	7	6	5
	160620733103	1	1	2		5	5	5
+	160620733104	2	2	1		7	5	5
		2	1	2				
	160620733106	2		2	4	5	6	5
	160620733107		2					5
	160620733108	2	2	2	5,5	4		5
1	160620733109	1	2	2	4,5	4		5
	160620733110	2	0	1	6.5	4	7	5
	160620733111	2	2	2	5		4	5
	160620733112	2	2	2	-	4.5	5	5
	160620733113	2	2	2	5		5	5
	160620733114	1		1	1			5
	160620733115	2	0	2		2.5	4	5
	160620733116	2		2	1		4	5
	160620733117	2	2	2	6		5	5
	160620733118	2	2	2		0	6	5
	160620733119	1	2	2	3		6	5
	160620733120	2	2	2		6.5	7	5
1	60620733306	2	1	2	4		4	5
	60620733307	1			2.5		4	5
	60620733308	2	10000	2	3		2	5
_	60620733309	2		2	3		3	5
	60620733310	2	0	2	3.5		4	5
	SUM	105	72	100	112	169	247	325
		61	49	57	30	38	55	65
	COUNT	61					4.49	5

	- 28	methy	No.	-	_	A	1
1	2	1,2	4.2	4.2	- 6		-
12	1.2	0	6.2	4.2	4,2		
-	0	1			0		
		1	0				
11		1	0 0 0	0	-	-	
-	d	0	0		0	-	
-	1	1	0	0	0		
	0	0	0				
-		0	0 0 0 0 0 0	0	\vdash	-	-
0	0	0	0	0	9		
0	0			0			
	0		0	0			
+	0	-	0	0		35	-
			0	1		200	
0	0	Ü	0	0	1		L
-	1	1	0	0			
0	0	0	0	0	1	-	-
1	1	1	0 0 0 0	0 0			1
0	0	0	0	1	100	9	8
	0	-	0	1	1	0	1
0	0	0	0	0	1	0	-
i	1	1	0	1		0	-
	0	1	0	0		0	1
0	0	0	0	0		0	1
	0	0	0	0	-	0	1
1	0	0	0	0		0	1
i	0	1	0	0		i	1
1	1	1	0	0		1	
	0	1	0	0		0	1
	1	I I	0	0		1	1
		1	0	1		1	1
1	0	0	0	0		0	1
1	1	1	0	1		1	1
1	1		0	1		0	1
1	1	1	0	0		0	1
1		1	0	1			i
0	0	1	0	1		1	1
1	1	0	0			1	1
1	0		0	1		1	1
1	0	1	0	0		0	1
0	1		1	0		0	-
1	0	0	1	0		0	1
1	1	1/2	1	0		0	
1	1	1	0	1		1	1
0	0	0	0	0		0	1
1	0	1	0	0		0	1
i	0	1	O	0		0	1
1	1	1	1	0		1	1
1	1	1	0	0		1	1
0	1	1	0	0		1	1
1	0	1	0		-	0	0
0	0	0	0	1	1	0	0
1	0	1	0	1	1	0	0
1	0	1	0 0 0		1	0 0 0	0 0 0 0
1	0	1	0)	0	0
52	32	44	1	2 2		32	59
61 85%	49	57	3	0 3	5%	55 58%	65
	65%						

CO-1	Y			y		y	Y
CO-2		8			y	y	Y
CO-3			· y				Ý
CO-4							
CO-5							

Students Scored >Target 94	52	32	44	12	21	32	59
% Students Scored		200	-	464		2000	20.00

CO Attainment based on Exam Questions:

CO-1	85%			40%		58%	9196
CO-2		65%			55%	58%	91%
CO-3			77%	HEALTH			91%
CO-4				-			
CO-5							

co	Subj	obj	Asign	Overall	Leve
CO-1	61%		91%	76%	3
CO-2	60%		91%	75%	3
CO-3 CO-4	77%		91%	84%	3
CO-4					
CO-5				Milli	

_				
Overall	Course	Atta	inment	=

Attair	ment Level
	>= 40 %
2	>= 60 %
3	>= 80 %

isnumbe le	vel fin	al level
TRUE	3	3
TRUE	3	3
TRUE	3	3
FALSE	3	
FALSE	3	
FALSE	3	

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WO Department of Computer Scheme & Engineering
Course Outcome Attainment
CHERISTA THEOREM
Academic 1 A Nectice. SOFTWARE ENGINEERING AT HY No. 5 5 5

2 2 3

6.5

1.5

6.5

4.5

6.5 3.5

6.5

247.0 64 63 63 49 22 51 1.6953 1.762 1.626984 5.04081633 3.5 4.3431

77.0 221.5 325.0

S

				4	1	-		6	I	Ai	1	
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2	1 - 1 0 - 1				1 0 0		3 1 1 1 1 1 1 1		
1 0 1 0 1 0 1 0 1		1 0 1 0 1 1 1	0 1 0 1 0 1		0 1 1 1		0 0 0 0		0 0 1 0 0			
1 1 1 1 0 1		1 1 1 1 1 0	1 1 1 1 0 0		0 0 1 0 0		0 0 0 0 0		0 0 0 0 1 0 0		1 1 1 1 1 1	
		1 0 1 0 1 1 1	000000000000000000000000000000000000000			7			0 0 1 0 0		1 1 1 1	
100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		1 1 1 1 1 1 1		1 1 1		0 0 1 0 1 0		0 0 0 1		
	1 1 1 1 1 0	1 1 1 1 1 1		1 1 1 1 1 1		0 0 1 1 0		0 0 1 0 0 0		0 1 1 1 1 1 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 0 1 0 0	1 1 1 1 1 0		1 1 1 1 1 0		1 0 1 0 1 1		0 0 0 0 0		1 1 1 1 0		1 1 1 1 1 1 1
	1 1 1 1 1	1 1 1 1 1		0 1 0 0 1		0 0 1 0 1		0 0 1 0 1		1 1 0 0		1 1 1 1 1 1 1
	1 0 0 1 1	1 0 1 1 55		1 1 0)	0 0		0 0 0		1 1 1
16	64 80%	6	3	6.	3	T.	19	41	2	53	1	65

CO-1							
CO-2						100	
CO-3				y			3
CO-4	19				V		
CO-5		· v	Y			Y	1

102.5

			5 50				_
Students Scored >Target %				33	9	27	61
% Statests Sound >Target %	E09+	¥74.	76%	67%	4115	53%	94%

sed so Exam Questions:

26 160620733086 27 160620733087 28 160620733088

29 160620733089 30 160620733090 31 160620733091

34 160620733094 35 160620733095

44 160620733104

46 160670733106 47 160620733107

56 160620733116 57 160620733117

160620733307

64 160620733309

AVERAGE

49 160620733109

35 160520733099 46 160620733100

1 0

0.5

108.5 111.0

0.5

CO-1							
CO-2							
CO-3				67%			94%
CO-4	80%				41%		94%
CO-5		K7%	76%			53%	94%

	co	Subj	obj	Asgs	Overall	Level		
	CO-1	الأناقال إلا					Attai	nment Level
	CO-2						1	> = 40.%
	CO-3	67%		94%	8176	3	2	> = 60 %
	CO-4	60%		94%	77%	1	3	> = 80 %
1	CO-5	72%		94%	83%	3		

rall Course Attainment =

isnumber level nal level FALSE 3 FALSE TRUE TRUE TRUE

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

Department of Computer Science & Engineering

Course Outcome Attainment

Name of the faculty: Branch & Section:

GHOUSIA BEGUM

CSE-2

Academic Year: 2022-23

Exam:

University

Subject:

SOFTWARE ENGINEERING

Year:

Ш

Semester: V Target %

60%

SL-No	REG. NO	NAME OF THE STUDENT	TOTAL
		Max Marks	10.00
1	160620733061	M SAMHITHA REDDY	6
			6
2	160620733062	ABBA ANJALI ADAMALA VYSHNAVI	7
3		ANDHRAPU MOUNIKA	5
5	160620733064	ANNEM ANUHYA	6
6	150620733065	ASNA MUSKAAN	7
7	160620733067	BANDARU NIKHITHA	5
8	160620733068	SAMIYA ASHRAF KHAN	6
9		BHUKYA MANI PRIYA	0
10		BODDU SHARANYA	7
11		CHANDU YAGNA PRIYA	0
12		CHIKKA HEMIKA	6
13	160620733073	D. SOWJANYA	0
14	160620733074	DAMARAJU SRI HARSHINI	7
15	160620733075	FAREEHA SAYEED	6
16		FIZA ABDUL AZIZ	6
17		GANGA PRERNA REDDY	5
18		GOSI VARSHITHA	6
19		GOUREDDY SINDHU	7
20		GUMMALLA SREYA	5
21		GUNDA LIKHITHA	6
22		JILKA PALLY SUMANA REDDY	6
23	160620733083	KNITHISHA	0
24		KAVALI SAI KEERTHI	5
25		K. VAISHNAVI	5
26		KAMBLE SHIVANI	7
27		KAMMADANAM JEYA KEERTHI	5
28		KANDALA AASHRITHA REDDY	0
29		KANDALA AKSHITHA REDDY	5
30		KANDUNURI SRUJALA	7
31		KAVITHA MANGALGI	5
32		KOPPULA ESHWARI	6
33		KOTHA SRIMUKHI	7
34		MALKU VARSHINI	6
35		MANPURI VENNELA	7
36		MARIYAM FATIMA	8
37			
38		MOHAMMED AFREEN NIKHATH MOKILA CHAITHANYA	8
39			6
40		MUTHYAM HARSHITHA	7
41		NARLAGIRI RACHANA	10
42		NARRA ANJALI	7
		NUNAVATH VAISHNAVI	9
43		PHARSHINI	6
44	160620733104	PATLOLLA SATHVIKA REDDY	7

	Is > Target!
	6
	1
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1
	1
	0
	0
1000	0
	1
THE RESERVE TO SERVE THE PARTY OF THE PARTY	0
	0
	0
	1
	0
	1
	1 1
	1
	1
10 (2 c 3 c)	1
	1
- FEET -	1
1 S - S - S - S - S - S	1 1 1
The state of the s	1
ALCOHOL: THE REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE	1

1

45	160620733105	PELLATE ANOUSHKA	6
46	160620733106	PERMAL BEULAH MARIA	7
47		PERUKA SHALINI	6
48	160620733108	PILLY ASHRITHA	8
49	160620733109	PUJALA NISHITHA	8
50	160620733110	PULLISANI SATVIKA	7
51	160620733111	RACHAKONDA SAHITHI	7
52		S MEGHANA	7
53		SINGASANI SOUMYA	8
54		TALARI LASYA	0
55	160620733115	UPPU AKSHAYA SREE	6
56	160620733116	V V VIDYADHARI	7
57		VANAM PAVANI	7
58		VEMURI ALEKHYA	8
59	160620733119	YELLANDULA SAI SIRI	6
60	160620733120	YUSRA RAFAT	8
61	160620733306	KORICHERLA SUPRIYA	6
62	160620733307	KAVALI SONIKA	6
63	160620733308	CHINTHAKUNTLA KEERTHANA	0
64	160620733309	GOTTANUKKULA NAVYA	6
65	160620733310	A ARCHANA	5

sum	377
avg	5.8

no. of students scored more than target %	46
no. of students present	65
Percentage of students scored more than target %	71%
Attainment level	2

Attainment Level	Percentage
1	>40%
2	>60%
3	>80%

Faculty: GHOUSIA BEGUM

SUM 46 Count 65 % 71%

0

STANLEY COLLEGE OF ENGINEERING & TECHNO

Department of Computer Science & Engineering

Course Outcome Attainment

Name of the faculty: GHOUSIA BEGUM Academic Year: 2021-22

Branch & Section: CSE-1 Year: III
Subject: SOFTWARE ENGINEERING Semester: V

University 1st Internal 2nd Internal Course Oute Exam Internal Exam Exam Exam 2 3 3 COL 2 3 3 CO2 3 2 3 3 CO3 3 3 2 CO4 3 3 2 CO5

Attainment level of Course Outcomes

	Course Outcomes	Attainment Level
CO1	Acquired working knowledge of alternative approaches and techniques for each phase of software developmen	2
CO2	Judge an appropriate process model(s) assessing software project attributes and analyze necessary requirements for	2
CO3	Acquire skills necessary as an independent or as part of a team for o	2
CO4	Judge an appropriate process model(s) assessing software project attributes and analyze necessary requirements for	2
COS	employing appropriate metrics by understanding the practical challenges associated with the development of a	2

Average
Uveran course attainment level

Faculty Signature

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOM

Department of Computer Science & Engineering

Program Outcome Attainment

Name of Faculty:

GHOUSIA BEGUM

Academic Year: 2022-2023

Branch & Section:

CSE-2

Year: III

Semester: V

SOFTWARE ENGINEERING

Course Name:

Course outcome attainment

со	lst Mid	llnd Mid	Int	Univ
CO1	3		3	2
CO2	3		3	2
CO3	3	3	3	2
CO4	1 1 20	3	3	2
COS		3	3	2

CO-PO mapping

I O IIII	apping						_	_	-	_	_	Name and Address of the Owner, where	In the second second	THE RESIDENCE OF
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2			2			1	2	1	2	2	1
CO2	2	2	2	2		1		2	1	1	1	2	1	2
CO3	2	2	1	2		2			2	2	1	2	1	1
CO4	2	2	1	2	1000	2			2	2	1	2	1	1
COS	2	1	1	1		1			2	1	2	1	1	2

PO-ATTAINMENT

		PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	6	6	6			6			3	6	3	6	6	3
	CO2	6	6	6	6		3		6	3	3	3	6	3	6
AL	CO3	6	6	3	6		6			6	6	3	6	3	3
INTERNAL	CO4	6	6	3	6		6			6	6	3	6	3	3
IN	CO5	6	3	3	3		3			6	3	6	3	3	6
	CO1	4	4	4			4	5		2	4	2	4	4	2
	CO2	4	4	4	4		2	E.C.	4	2	2	2	4	2	4
SIT	CO3	4	4	2	4		4			4	4	2	4	2	2
UNIVERSITY	CO4	4	4	2	4		4		100	4	4	2	4	2	2
N	CO5	4	2	2	2		2			4	2	4	2	2	4
	CO1	2	2	2			2			2	2	2	2	2	2
	CO2	2	2	2	2		2		2	2	2	2	2	2	2
1	соз	2	2	2	2		2			2	2	2	2	2	2
RAI	CO4	2	2	2	2		2			2	2	2	2	2	2
OVERALL	COS	2	2	2	2		2			2	2	2	2	2	2
At	tainment	2	2	2	2		2		2	2	2	2	2	2	2

Faculty GHOUSIA BEGUM

Head of the Deapartment CSE

Stanley College of Engineering & Technology for Women Chapel Road, Hyderabad

B.E IV SEM (A,B,C) I-Mid Examination, 6th May 2022

OPERATING SYSTEM SET-1

[Time: 1 Hour]

[Max. Marks: 20]

[Time: 9.30 -10.30AM]

Note: 1) Answer all questions of Part-A
2) Answer any two questions from Part-B
PART – A (6 Marks)

1	Explain layered structure of operating system.	(2)
2	Define and draw the Process Control Block (PCB)?	(2)
3	Define Context Switching?	(2)
	PART – B (14 Marks)	
4	What is Operating System? List the services that an Operating System providits u s e r s?	des to
5	Draw the Gant Chart For FCFS and SJF, priority scheduling algorithm and	

Draw the Gant Chart For FCFS and SJF, priority scheduling algorithm and	T.
calculate Waiting Time, Turn Around Time, Average Waiting Time and	
Average Turn Around Time for the given problem	(7)

Process	Burst time
P1	10
P2	3
P3	1
P4	5
P5	7

6 Explain in detail Operating system Types?

(7)

Paper Set by: Dr. M.Swapna, Mrs.Shivani Yadao

CO Mapping

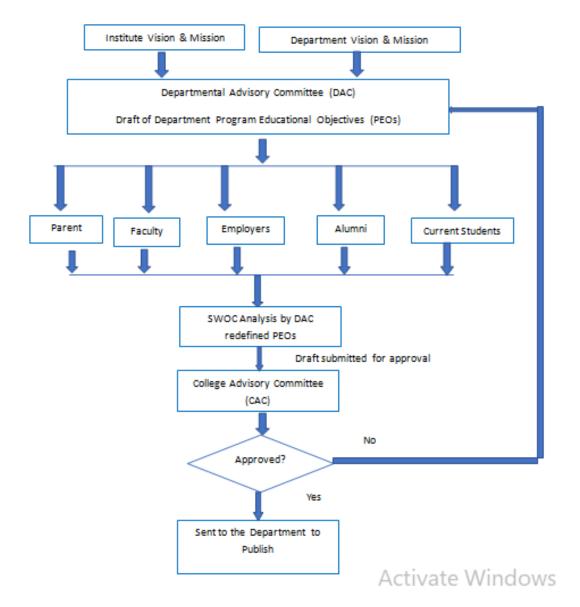
Q1	Q2	Q3	Q4	Q5	Q6
CO1	CO2	CO2	CO1	CO2	CO1
(Understand)	(Knowledge)	(Knowledge)	(Understand)	(Analyze)	(Knowledge)

PEOs ,POs and PSOs of IT Dept

Program Educational Objectives (PEOs)

PEO1: Graduates shall have enhanced skills and contemporary knowledge to adapt new software and hardware technologies for professional excellence, employment and Research.

PEO2: Proficient in analyzing, developing, solving engineering problems to assist life-long learning and to develop team work.


PEO3: To inculcate self-confidence, acquire professional and ethical attitude, infuse leadership qualities, impart proficiency in soft-skills and the ability to relate engineering with social issues.

Programme Outcomes:

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics and natural sciences and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment & sustainability:** Understand the impact of professional engineering solutions in societal and environmental context, and demonstrate knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and Team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes:

- **1. PSO1**: Acquire skills to design, analyze and implement algorithms using high-level programming languages.
- **2. PSO2**: Contribute their engineering skills in information technology domains like operating systems, network design and web designing, database design, information security and cloud computing.
- **3. PSO3**: An ability to design and implement knowledge-based discovery and machine learning by using the various concepts of mathematical models, digital system design, neural networks, internet of things.

Flow Chart of process for defining PEO's of the IT - department

- **1. PSO1**: Acquire skills to design, analyze and implement algorithms using high-level programming languages.
- **2. PSO2**: Contribute their engineering skills in information technology domains like operating systems, network design and web designing, database design, information security and cloud computing.
- **3. PSO3**: An ability to design and implement knowledge-based discovery and machine learning by oncepts of mathematical models, digital system design, neural networks, internet of things

COURSE INFORMATION SHEET

COURSE NAME: VLSI DESIGN	COURSE CODE: PC 701 IT	REGULATION: 2018-19						
	A.Y:2022-23							
PROGRAM / YEAR / SEMESTER:BE/IV/VII	CREDITS: 4							
COURSE TYPE: INTER-DISCIPLINARY								
COURSE AREA/DOMAIN: VLSI	CONTACT HOURS: 3+1 (Tutorial) hours/We	ek.						
CORRESPONDING LAB COURSE NAME, CODE (IF ANY): VLSI DESIGN Lab PC 751 IT								
PRE-REQUISITE COURSES/SEM/CODE (IF ANY):MICRO ELECTRONICS (BIT202)								

SYLLABUS:

UNIT	DETAILS	HOURS (LECTURE)	HOURS (TUTORIAL)
I	Moore's law ,VLSI Design Hierarchy, MOSFET as switches, pass characteristics, Basic logic gates and complex logic gates using CMOS, Bubble pushing, XOR and XNOR gates, AOI and OAI logic gates, Transmission gates-TG based 2-to-1 MUX, XOR, XNOR circuits. Electrical Characteristics of MOSFETs, Threshold voltage, nFET Current-Voltage equations, trans-conductance and drain characteristics of nFET, RC model of a FET, MOS capacitances, gate-source and gate- drain capacitances, junction capacitances in a MOSFET, scaling concept of MOSFETs	8	2
п	Integrated Circuit definition and layers, Top and side view of IC layers, CMOS Layers-MOSFET layers in an n-well process. Silicon patterning for series and parallel connected FETs. Layouts of NOT gate, transmission gate, non-inverting buffer, NAND2, NOR2, Complex logic gate, 4 input AOI gate. Stick diagram representation of NOT, NAND2 and NOR2. Fabrication of CMOS ICs, CMOS process flow, Design rules: minimum space width,	9	1
Ш	minimum spacing, surround, extension Layouts of Basic Structure: nwells, active area definition, design of n ⁺ , p ⁺ regions, masks for the nFET, pFET, active contact cross section and mask set, metal1 line with active contact, poly contact: cross section and layout,. Latchup and its prevention. DC characteristics of the CMOS inverter, Expression for midpoint voltage of CMOS inverter, Symmetrical inverter, Inverter switching characteristics, fan-out, input capacitance and loading due to fan-out, RC switch model equivalent for the CMOS inverter, rise time and fall time expressions, propagation delay of CMOS inverter.	10	2
IV	Pseudo nMOS logic gates, tri-state inverter circuit, Clocked CMOS circuit, charge leakage in C ² MOS circuit, Dynamic CMOS logic circuits: pre-charge and evaluation modes of operation, Domino logic, Dual rail logic networks- Differential Cascade Voltage Switch Logic (DCVSL) AND/NAND, OR/NOR gates, Complementary Pass Transistor Logic (CPL) structures. SRAM – General SRAM cell, 4T & 6T SRAM cell design parameters, Writing to SRAM, resistor model, SRAM arrays. Dynamic RAMs: 1T DRAM cell, charge leakage and refresh in a DRAM cell	9	1
V	VLSI Design flow, structural gate level modeling, gate primitives, gate delays, switch level modeling, behavioral and RTL operators, timing controls, blocking and non blocking assignments, conditional statements, Data flow modeling and RTL, Comparator and priority encoder, D latch and Master-Slave D flip-flop- verilog code. Arithmetic circuits: half adder, full adder, ripple carry adder, carry look ahead adder- verilog code. Interconnect modeling; Interconnect resistance and capacitance ,sheet resistance Rs, time delay, single and multiple rung ladder circuits, simple RC inter connect model, modeling inter	9	1
	connect lines with a series pass FET, Crosstalk, Floor planning and routing.		

TEXT/REFERENCE/ADDITIONAL BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLISHER
T1	John P. Uyemura, "Introduction to VLSI circuits and Systems", John Wiley & Sons, 2002
T2	John P. Uyemura, "Chip design for submicron VLSI: CMOS layout and simulation" IE, Cengage learning,
	2006.
R1	Douglas A. Pucknell, Kamran Eshraghian, "Basic VLSI Design" 3 rd Edition, PHI, 2000.
R2	Jan M. Rabey and others "Digital Integrated Circuits A design perspective", Pearson Education

WEB SOURCE REFERENCES: (Detailed Topic link)

W1 nptel.ac.in/downloads/106108101/

W2 engineeringppt.blogspot.com/.../vlsi-concepts-8th-edition.h...

COURSE OUTCOMES:

SNO	DESCRIPTION	PO(112)	PSO(13)
		MAPPING	MAPPING
PC 701 IT.1	Explain VLSI Design hierarchy and analyse logic gates using CMOS & transmission gate structures. (BLT 2)	PO1,PO2,PO3,PO4,PO12	PSO1,PSO2
PC 701 IT.2	Identify the layers in the physical structure of ICs and draw the layouts of CMOS logic gates (BLT 2,4)	PO1,PO2,PO3,PO4	PSO1,PSO2
PC 701 IT.3	Summarize the fabrication process of CMOS ICs and analyse the DC, switching characteristics of CMOS inverter. (BLT 2,4)	PO1,PO2,PO3,PO4	PSO1,PSO2
PC 701 IT.4	Analyse dynamic CMOS & pseudo nMOS structures of logic gates, SRAM & DRAM cells (BLT 4)	PO2,PO3,PO4.PO12	PSO1,PSO2
PC 701 IT.5	Develop Verilog code for logic gates, examine the effects of interconnect elements in logic cascades and Explain the floor-planning , routing techniques of VLSI circuits(BLT 6)	PO1,PO2,PO3,PO4,PO5	PSO1,PSO2

COURSE OUTCOMES VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

					(,	- ,		- ,	, .			
SNO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PC 701 IT.1	3	3	2	2								3	2	3
PC 701 IT.2	2	3	3	3									2	3
PC 701 IT.3	3	3	3	2									2	2
PC 701 IT.4		2	3	1								3	2	3
PC 701 IT.5	3	3	3	2	3								2	2
PC 701 IT	3	2.8	2.8	2.2	3	3						3	2	2.5

*	For	Entire	Course,	PO	&	PSO	Ma	ppin	ç
---	-----	--------	---------	----	---	------------	----	------	---

Note: Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

If there is no correlation, put "-"

POs & PSO REFERENCE:

PO1	1 Engineering Knowledge		PO6 Engineer & Society		Project Mgt. & Finance
PO2	Problem Analysis	PO7	Environment & Sustainability	PO12	Life Long Learning
PO3	Design & Development	PO8	Ethics	PSO1	
PO4	Investigations	PO9	Individual & Team Work	PSO2	
PO5	Modern Tools	PO10	Communication Skills	PSO3	

GAPS IN THE SYLLABUS - TO MEET COs, POs & PSOs:

SNO	GAP	PROPOSED ACTIONS	PROPOSED RESOURCE	СО	PO / PSO
1	Differences b/w BJT and MOSFET,MOSFET advantages over BJT in fabrication	Lecture	Internal	PC 701 IT.1	PO1,PSO1,PSO2
2	Modelsim software	Free tutorial	Laboratory	PC 701 IT.5	PO5,PSO1,PSO2

TOPICS BEYOND SYLLABUS: Additional course material / learning material / Lab Experiments / Projects

S.No	Description	CO	PO/PSO
1	NMOS& PMOS Fabrication flow	PC 701	PO3, PSO1,PSO2
		IT.3	

Web Link of the Course Material: googlemeet,stanleylms.swecha.org
Innovation / Pedagogical Initiatives to cater Weak & Advanced Learners: ___

INSTRUCTIONAL METHODOLOGIES:

1	REAL WORLD EXAMPLES	COLLABORATIVE LEARNING	QUALITY LAB EXPERIMENTS	OBSERVATIONS RECORDED
	INDUSTRY INTERNSHIP	SUMMER TRAINING	EXPERT GUEST LECTURES	PROJECTS
1	USE OF ICT	ANY OTHER (SPECIFY)		

ASSESSMENT METHODOLOGIES-DIRECT

1	EXAM QUESTIONS	1	TUTORIAL QUESTIONS	1	ASSIGNMENTS	LABORATORY TESTS
	PROJECT EVALUATION		STUDENT ARTIFACTS		ORAL EXAMS	PROJECT PRESENTATIONS
1	INTERNALLY DEVELOPED EXAMS		ANY OTHER (SPECIFY)			

ASSESSMENT METHODOLOGIES-INDIRECT

1	STUDENT EXIT SURVEY	CO-CURRICULAR ACTIVITIES	EXTRA CURRICULAR ACTIVITIES

Prepared by

HOD

Mrs. Ruquia Alam

Assitant Professor ,IT

2.6 Students Performance and Learning Outcomes

2.6.1 - Programme and course outcomes for all Programmes offered by the institution are stated and displayed on website and communicated to teachers and students.

I&II SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
PROGRAMMING FOR PROBLEM SOLVING PROGRAMMING FOR PROBLEM SOLVING LAB	SES101CS SES111CS	SES101CS.1Describe the concept of computer system, analyze a given problem, develop an algorithm, fundamental programming constructs, identify data representation formats, and describe operators and their precedence, associativity SES101CS.2 Understand branching and loop statements. SES101CS.3 Describe the concept of homogeneous derives data types, strings and functions. SES101CS.3Describe the concept of homogeneous derives data types, strings and functions. SES101CS.4 Understand pointers and heterogeneous data types SES101CS.5 Describe the concept of file system SES111CS.1 Understand the concept of basics of C, data types and variables. SES111CS.2 Understand the concept of operators, precedence of operators, conditional statements and looping statements. SES111CS.3 Explore the concept of strings, functions,
		recursive functions and differences between call by value and call by reference SES111CS.4 Explore the concept of storage classes, preprocessor directives, pointes and files. SES111CS.5 Understand the concept of file handling functions, searching and sorting methods and real time applications of C.
DATA STRUCTURES USING C	SES202IT	SES202IT .1Able to analyze the algorithms and express algorithm complexity using Asymptotic Notations, select appropriate searching and sorting technique for given problem. SES202IT.2 Implement standard searching and sorting algorithms; including binary search; merge sort and quick sort; and their complexities SES202IT.3 Design and implement linked lists, stacks and queues in C SES202IT.4 Design and implement tree structures in C [Apply] SES202IT.5Understand the extended data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs
DATA STRUCTURES USING C LAB	SES212IT	SES212IT.1Understand various data representation techniques in the real world. SES212IT.2 Implement linear and non-linear data structures.
		SES212IT.3 Analyze various algorithms based on their time and space complexity.

SES212IT.4Develop real-time applications using
suitable data structure.
SES212IT.5 Identify suitable data structure to solve
various computing problems.

III SEM

NAME OF	COURSE	COURSE OUTCOMES
COURSE	CODE	
PROBABILITY &	SBS301MT	SBS301MT.1 Apply probability theory to solve practical
STATISTICS		problems.
		SBS301MT 2. Apply various probability distributions to
		solve practical problems, to estimate
		unknown parameters and apply tests of hypothesis.
		SBS301MT 3. Perform a regression analysis and to compute
		and interpret the coefficient of
		correlation, Chi-square test for goodness o'f fit and
		independent attributes
		SBS301MT 4. To determine the numerical solutions of
		Ordinary differential equations.
		SBS301MT 5. To determine if a set of vector space is a
		vector space, Subspace or a basis
DISCRETE	SES202IT	ES303EC.1 Understand sets, functions, groups and relations
MATHEMATICS	2-2-1	ES303EC.2 Apply permutation and combination to handle
		different types of problems.
		ES303EC.3 Apply propositional logic and predicate logic to
		solve logical statements.
		ES303EC.4 Evaluate Boolean functions and simplify
		expressions using the properties of Boolean Algebra
		ES303EC.5 Develop the given problem as graph networks
		and solve with techniques of graph theory.
DATABASE	PC302IT	PC302IT.1Understand the role of database management system in
MANAGEMENT	1 00 0211	an organization and learn the database concepts.
SYSTEMS		PC302IT.2 Construct database queries using relational algebra and
		SQL
		PC302IT.3 Design databases using data modeling and Logical
		database design techniques
		PC302IT.4 Evaluating the indexing, hashing techniques and
		transaction management.
		PC302IT.5 Understand the concept of a database transaction and related concurrent, recovery facilities.
OOPS USING	SPC 301 IT	SPC301IT.1 Identify classes, objects, members of a class and the
JAVA	51 6 501 11	relationships needed to solve a Problem
GILVIL		SPC301IT.2 Use interfaces and creating user-defined packages
		SPC301IT.3 Utilize exception handling and Multithreading
		concepts to develop Java programs.

		SPC301IT.4 Compose programs using the Java Collection API SPC301IT.5 Design a GUI using GUI components with the
		integration of event handling.
DIGITAL ELECTRONICS	SE302EC	SES302EC.1 Understand the deign process of digital hardware, use Boolean algebra to minimize the logical expressions and
		optimize the implementation of logical functions (BLT 3)
		SES302EC.2 Understand the number representation and design
		combinational circuits like adders, MUX(BLT 3)
		SES302EC 3 Design combinational logic circuits using PLDs (BLT 5)
		SES302EC.4 Analyze sequential circuits using flip-flops and
		design registers, counters (BLT 2)
		SES302EC.5 Represent a sequential circuit using finite state
		machine and apply state minimization techniques to design
	a . aa	FSM(BLT 5)
ELECTRICAL	SAC903EE	SAC903EE.1 Gain knowledge of construction and operation of
TECHNOLOGY		conventional and nonconventional sources
		SAC903EE.2 Understand the working principle of single phase
		and three phase transformers SAC903EE.3 Understand the Working principle of generator and
		motor
		SAC903EE.4 Know the working of inverter and rectifier operation
		SAC903EE.5 Understand the concept of Electrical vehicles
OOPS USING	SPC311 IT	SPC311IT.1Understand object-oriented programming
JAVA LAB		fundamental and java programming fundamentals such as classes,
		inheritance, abstract classes, interfaces, packages.
		SPC311IT.2Apply exception handling, multithreading, input
		output basics and string handling.
		SPC311 IT.3 Design and apply collection framework.
		SPC311 IT.4 Design AWT and Swings concept.
		SPC311 IT.5 Apply input-output operations through IO package.
DATABASE	SPC 312IT	PC 312 IT.1 Implement the basic knowledge of SQL queries and
MNAGEMENT SYSTEM LAB		relational databases. PC312IT 2Design and implement a database scheme for a given
SYSTEM LAB		PC312IT.2 Design and implement a database schema for a given problem.
		PC312IT.3 Implement different constraints for refining of the
		databases.
		PC 312 IT.4 Implement various triggers, procedures and cursors
		using PL/SQL.
		PC 312 IT.5 Generate forms and reports.

V SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
OPERATING	PC 502 IT	PC502IT.1 Explain the fundamental concepts
SYSTEMS		and functions of operating system.
		PC502IT.2 Understand process scheduling in a
		multi-programming environment and
		implementing process scheduling algorithms
		PC502IT.3 Write application and system calls
		related programs for managing processes,
		memory, I/O and inter-process Communication
		related system calls.
		PC502IT.4Understand memory management,
		disk management techniques, including virtual
		memory and file system structure.
		PC502IT.5 Explain protection and security
		related issues of the computer system.
ARTIFICIAL	PE 511 IT	PE511IT.1 Learn the fundamentals of AI. Gain
INTELLIGENCE		Insights Characteristics of Problem with
		illustrations.
		PE511IT.2 Apply problem solving through
		search for AI applications
		PE511IT.3 Understand principles of knowledge
		representation basics and advanced methods like
		frames and semantic web.
		PE511IT.4 Understand the use and applications
		of expert systems and Apply probability theory
		to draw conclusions using Naïve Bayes and
		Bayesian networks.
		PE511IT.5 Understand the need of machine
SOFTWARE	PC505IT	learning and fuzzy logic PC505IT.1 Define different software
ENGINEERING	PC50511	
ENGINEERING		development processes and their usability in different problem domains
		PC505IT.2 Explain the process of requirements
		collection, analyzing, and modelling
		requirements for effective understanding and
		communication with stakeholders
		PC505IT.3 Design and Develop the architecture
		of real world problems towards developing a
		blueprint for implementation
		PC505IT.4 To understand the importance of
		testing in software development and study
		various testing strategies and software quality
		metrics
		PC505IT .5 Discuss the concepts related to Risk

		management and Software project Estimation
OBJECTORIENTEDAN	PE511IT	PE511IT.1Understandtheactivitiesinthedifferentphas
ALYSISANDDESIGN		esoftheobject-orienteddevelopmentlifecycle.
		PE511IT.2 Modelareal-
		worldapplicationbyusingaUML diagram. PE511IT.3
		Provideasnapshotofthedetailedstateofasystemat
		appoint intimeusingobjectdiagram.
		PE511IT.4 Recognizewhentousegeneralization,
		aggregation, and composition relationships. Specify different types of busing the second seco
		nessrulesinaclass diagram.
COMPUTER	PC504IT	PC504IT .1 Student can able to explain the
NETWORKS		function of each layer of OSI and trace the flow
		of information (Understand)
		PC504IT.2 Node to another node in the network
		routing (Understand)
		PC504IT.3 Understand the principles of IP
		addressing and internet routing (Understand)
		PC504IT.4 Describe the working of various
		networked applications such as DNS, mail, file
		transfer and www (Remember)
		PC504IT .5 Implement client-server socket-based
ATTOMATA	DC501IT	networked applications (Apply) PC501IT.1 Design and use deterministic,
AUTOMATA THEORY	PC501IT	PC501IT.1 Design and use deterministic, nondeterministic, and epsilon transition finite state
THEORY		automata and illustrate state transition on symbols of
		input words and establish the corresponding language
		of automata
		PC501IT.2 Analyze Regular Expressions and use
		Laws and establish the corresponding Regular
		Language. Prove a given language is regular or otherwise. Use Closure and Decision Properties of
		Regular Language
		PC501IT.3 Analyze ambiguity. Develop Context
		Free Grammars, Parse Tees and establish Context
		Free Language. Use Closure and Decision Properties
		of Regular Language
		PC501IT.4 Design Pushdown Automata and illustrate the working.
		PC501IT.5 Develop deterministic Pushdown
		Automata and establish equivalence of language of
		PDA and CFG
		PC501IT.6 Design Turing Machine and illustrate its
		working, implement programming techniques for
		Turing Machines, analyze extended and restricted Turing Machines for computational abilities, and
		establish the Recursively Enumerable language of
		Turing Machine and analyze the Undecidable

		problems
WEB APPLICATION	PC533IT	PC533IT.1 Design Web pages and perform form
DEVELOPMENT		validation using HTML 5.0 inbuilt
LAB		PC533IT.2 Apply Styles to the web content using
		CSS
		PC533IT.3 Create and process web publishing
		content using XML and JSON.
		PC533IT.4 Use JQuery to perform client side
		Dynamics.
		PC533IT.5 Create single page applications (Front
		End) using Angular JS.
		PC533IT.6 Design Big data applications using Mean
		stack or SMACK stack Frameworks
ARTIFICIAL	PC552IT	PC552IT.1 Design and develop solutions for
INTELLIGENCELAB		informed and uninformed search problems in AI.
		PC552IT.2 Demonstrate reasoning in first order
		logic using Prolog
		PC552IT.3 Utilize advanced package like
		NLTK for implementing natural language
		processing.
		PC552IT.4 Demonstrate and enrich knowledge
		to select and apply python libraries to synthesize
		information and develop supervised learning
		models
		PC552IT.5 Develop a case study in
		multidisciplinary areas to demonstrate use of AI.
COMPUTERNETWORK	PC551IT	PC531IT.1Understand the usage of basic
S&OPERATINGSYSTE		commands ipconig, ifconfig, netstat, ping, arp,
MLAB		telnet,ftp,finger,traceroute, whois of LINUX
		platform.
		PC531IT .2Develop and Implement Client-Server
		Socket based programs using TCP, and UDP
		sockets
		DOCATE AD and I was a Distance
		PC531IT .3Develop and Implement Distance
		Vector Routing Algorithm
		DC521IT (Develop on J. Investment DCA, D. 11)
		PC531IT.4Develop and Implement RSA Public
		Key algorithm
		DOCATION CONTRACT TO A 1 1 1 1 1
		PC531IT .5Construct simple network by using any
		modern Open Source Network Simulation Tool

VII SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
CLOUD COMPUTING	PE 713 IT	PE 713 IT.1 Understand the architecture and concept of different cloud models: IaaS, PaaS, SaaS, PE713IT.2 Create virtual machine images and deploy them on cloud PE713IT.3 Identify security and compliance issues in clouds
VLSI DESIGN	PC 701 IT	PC 701 IT.1 Explain VLSI Design hierarchy and analyse logic gates using CMOS & Design hierarchy and gate structures. PC 701 IT.2 Identify the layers in the physical structure of ICs and draw the layouts of CMOS logic PC 701 IT.3 Summarize the fabrication process of CMOS ICs and analyse the DC, switching characteristics of CMOS inverter. PC 701 IT.4 Analyse dynamic CMOS & DRAM cells PC 701 IT.5 Develop Verilog code for logic gates, examine the effects of interconnect elements in logic cascades and Explain the floor-planning, routing techniques of VLSI circuits
BIG DATA ANALYTICS	PC 702 IT	PC 702 IT.1 Demonstrate big data and use cases from selected business domains. PC 702 IT.2 Apply the knowledge of NoSQL big data management and experiment with Install, configure, and run Hadoop and HDFS. PC 702 IT.3 Analyze map-reduce analytics using Hadoop. PC 702 IT.4 Adapt Hadoop related tools such as HBase, PCass PC 702 IT PC302.5 Develop applications in Hive and Pig
FUNDAMENTALS OF IOT	OE 773 EC	OE773EC.1 Understand the various applications of IoT and other enabling technologies OE773EC.2 Comprehend various protocols and communication technologies used in IoT OE773EC.3 Design simple IoT systems with requisite hardware and C programming software OE773EC.4 Understand the relevance of cloud computing and data analytics to IoT OE773EC.5 Comprehend the business model of IoT from developing a prototype to launching a product.

VLSI DESIGN	PC 751 IT	PC751 IT.1 Demonstrate Xilinx ISE suite to write
LAB		Verilog code for logic gates, combinational circuits and
		sequential circuits
		PC751 IT.2 Write Verilog code for basic logic gates,
		complex logic gates, combinational circuits, and
		sequential circuits using switch level, gate level, data
		flow and behavioural modelling
		PC751 IT.3 Develop test bench code using Verilog and
		verify the simulation results.
		PC751 IT.4 Demonstrate the FPGA implementation of
		digital circuits and generate the synthesis report
		PC751 IT1.5 Draw the layouts of basic logic gates using
		Microwind
PROJECT WORK	PW 761 IT	PW 761 IT.1 Demonstrate the ability to synthesize and
- I		apply the knowledge and skills acquired in the academic
		program to the real-world problems.
		PW 761 IT.2 Evaluate different solutions based on
		economic and technical feasibility
		PW 761 IT.3 Effectively plan a project and confidently
		perform all aspects of project management
		PW 761 IT.4 Demonstrate effective written and oral
		communication skills

IV SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
THEORY OF	SPC401IT	SPC401IT .1Gain the knowledge of basic kinds of finite
AUTOMATA	51 (40111	automata and their capabilities.
AUTOMATA		SPC401IT .2Understand regular and context-free
		languages
		SPC401IT .3Gain the knowledge to analyze regular
		expressions and grammars
		SPC401IT .4Design finite automata, push down automata
		SPC401IT .5Constructing the Turing machine for
DICTELL DILCE	GEG 40AE G	Recursive languages.
DIGITAL IMAGE	SES402EC	SES402EC .1Illustrate an image, applications of DIP,
PROCESSING		image sampling & quantization. BLT1
		SES402EC .2Implement basic transforms used in image
		processing like FFT, DCT, Slant transform etc. BLT4
		SES402EC .3Distinguish spatial & frequency domain enhancement, Image smoothing and sharpening
		operations. BLT2
		SES402EC .4Estimate the degradation functions using
		image observation, experimentation and by modeling,
		Inverse filter. BLT1
		SES402EC .5Implement image segmentation techniques,
		identify descriptors, shape numbers. BLT3
		Describe types of redundancy. types of compression
		techniques and their compression ratio. BLT1
COMPUTER	SPC403IT	SPC403IT .1 Understand the Instruction Set Architecture:
ORGANIZATION		Instruction format, types, various
AND		addressing modes
MICROPROCESSOR		SPC403IT .2 Understand the basic components of the CPU SPC403IT .3 Understand the parallelism both in terms of a
		single processor and multiple processors
		SPC403IT .4 Understand the 8085 and 8051 architectures
		SPC403IT .5 Apply interfacing with I/O Organization,
		Interrupt-driven I/O, DMA
SIGNALS &	SES401EC	SES401EC .1To be able to classify, describe the signals
SYSTEMS		mathematically and learn how to perform mathematical
		operations on signals.
		SES401EC .2To be able to compute the Fourier series of a
		set of well-defined signals in different forms.
		SES401EC .3Able to represent aperiodic signals by Fourier Transform and use Laplace transform to solve
		differential equations.
		SES401EC .4To be able analyze Discrete time signal
		using Fourier series and Fourier integral
		SES401EC . 5 Able to find discrete z-transform and DTFT
		of a given problem.
OPERATING	SPC402IT	SPC402IT .1Understand System calls and evaluate
SYSTEMS		process scheduling

		SPC402IT .2Apply procedures for process
		synchronization
		SPC402IT .3Understand the concepts of deadlock
		SPC402IT .4Implement the concepts of memory
		management.
		SPC402IT .5 Understand file system interface and I/O
		systems.
MICROPROCESSORS	SPC413IT	SPC413IT .1Interpret the principles of Assembly
LAB		Language Programming, instruction set in
		SPC413IT .2developing microprocessor-based
		applications.
		Develop Applications such as: 8-bit Addition,
		Multiplication, Division, array
		SPC413IT .3 operations, swapping, negative and positive
		numbers.
		SPC413IT .4Analyse the interfaces like serial ports,
		digital-to-analog Converters and analog-to-
		digital converters etc.
		SPC413IT .5Build interfaces of Input-output and other
		units like stepper motor.
		Analyse the function of traffic light controller.
OPERATING	PC412IT	PC412IT .1Execute the UNIXcommands.
SYSTEMS LAB		PC412IT .2Implement CPU scheduling algorithms.
		PC412IT .3Implement producer-consumer problem reader-
		writers problem, dinning philosophers' problem.
		PC412IT .4Apply the Banker's algorithm for deadlock
		avoidance.
		PC412IT .5Implement page replacement and disk
		scheduling techniques.
PYTHON LAB	SPC411IT	SPC411IT .1Develop and execute simple programs using
		Python.
		SPC411IT .2Use conditional control structures for problem
		SPC411IT .3solving Decompose a problem using
		functions.
		SPC411IT .4Represent compound data using lists, tuples,
		dictionaries using Python
		SPC411IT .5Solve the complex problems using advanced
		Python concepts and design GUI.

VI SEMISTER

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
EMBEDDED	PC 601 IT	PC 601 IT .1Study and analysis of Embedded Systems
SYSTEMS		PC601 IT .2Design and develop embedded systems
		(hardware, software and firmware)
		PC 601 IT.3Analyses real time systems using RTOS and
		develop applications
		PC 601 IT .4Apply knowledge to interface various sensors and
		its applications in Embedded systems
		PC 601 IT .5Understand principles of SOC design.
DESIGN AND	PC602IT	PC602IT .1 Compute and analyse complexity of algorithms
ANALYSIS OF		using asymptotic notations.
ALGORITHMS		PC602IT .2 Write algorithms to solve various computing problems and analyse their time and space complexity.
		PC602IT .3 Understand and apply different algorithm design
		techniques to solve real world problems and analyse their
		complexities.
		PC602IT .4 To describe algorithmic complexities of various
		well known computing problems. PC602IT .5 To learn algorithm design strategies such as
		Divide-and-Conquer, greedy method, dynamic programming,
		back tracking and branch & bound technique And the concepts
		of NP-hard and NP-complete.
SOFTWARE	PE621 IT	PE621 IT .1 Solve the problems using Software Testing
TESTING AND		techniques and Approaches.
QUALITY ASSURANCE		PE621 IT .2 Apply various Software testing Techniques to find bugs in software.
ASSURANCE		PE621 IT .3 Use open source software Testing Tools
		PE621 IT .4 Apply various Software Quality Assurance
		Techniques to ensure the quality in software.
N. T.	D.C. (0.4.75)	PE621 IT .5 Apply several software measurements and metrics
NETWORK SECURITY AND	PC 604 IT	PC604IT.1 Understand the network security, services, attacks, mechanisms, types of attacks
CRYPTOGRAPHY		PC604IT.2 Demonstrate the various Symmetric and
		Asymmetric cryptographic algorithms
		PC604IT.3 Discuss various Authentication and Key
		Distribution Algorithms
		PC604IT.4 To comprehend and apply network layer security protocols Transport layer security protocols, Web security
		protocols.
		PC604IT.5 Implement Email security and IP Security
		mechanisms to the network.
DISASTER	OE 601 CE	
MITIGATION	DCCOSTT	DC603IT 1 Extract features that can be used for a resticular
MACHINE LEARNING	PC603IT	PC603IT.1 Extract features that can be used for a particular machine learning approach in various
LEARING		applications.
		PC603IT.2 Compare and contrast pros and cons of various

		machine learning techniques and to get
		an insight when to apply particular machine learning approach.
		PC603IT.3 Apply ensemble techniques for improvement of
		classifiers.
		PC603IT.4 Understand machine learning process along with
		algorithms.
		PC603IT.5 Understand how to apply machine learning in
151 00000		various applications.
MACHINE	PC652 IT	PC652IT.1Apply machine learning algorithms: dataset
LEARNING LAB		preparation, model selection, model building etc.
		PC652 IT.2 Evaluate various Machine Learning approaches.
		PC652 IT.3 Use scikit-learn, Keras and Tensorflow to apply
		ML techniques.
		PC652IT.4Design and develop solutions to real world
		problems using ML techniques.
		PC652IT.5 Apply unsupervised learning and interpret the
		results.
EMBEDDED	PC651IT	PC651IT.1 Apply the basic concepts to develop an Interface
SYSTEMS LAB		for 8051 and ARMprocessors.
		PC651IT.2 Demonstrate the RTOS Concepts by designing real
_		timeapplications.
MOBILE	PC653 IT	PC653IT.1 Identify various concepts of mobile programming
APPLICATION		that make it unique from
DEVELOPMENT		programming for other platforms.
LAB		PC653IT.2 Critique mobile applications on their design pros
		and cons,
		PC653 IT.3 Utilize rapid prototyping techniques to design and
		develop sophisticated mobile
		interfaces,
		PC653IT.4 Program mobile applications for the Android
		operating system that use basic and
		advanced phone features, and
		PC653IT.5 Deploy applications to the Android marketplace
		for distribution.
MINI PROJECTS-I	PW654IT	PW654IT.1 Able to Identify and finalize problem statement by
		surveying variety of domains and technologies(Analyse)
		PW654IT.2 Able to Acquire practical knowledge within the
		chosen area of technology for project
		development(Understand)
		PW654IT.3 Able to Perform requirement analysis and identify
		design methodologies(Analyse)
		PW654IT.4 Able to Implement the system using SQL, data
		structures, C/C++, JAVA, Python and different software
		engineering models and present technical report by applying
		different visualization tools(Apply)
		PW654IT.5 Able to Contribute as an individual or in a team as
		a member in project development(Evaluate)

VIII SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
CRYPTOGRAPHY AND NETWORK SECURITY	PC 813 IT	PC 813 IT.1Understand the network security, services, attacks, mechanisms, types of attacks PC 813 IT.2 Demonstrate the various Symmetric and Asymmetric cryptographic algorithms PC 813 IT.3 Discuss various Authentication and Key Distribution Algorithms PC 813 IT.4 To comprehend and apply network layer security protocols Transport layer security protocols, Web security protocols. PC 813 IT.5 Implement Email security and IP Security
		PC 813 IT.5 Implement Email security and IP Security mechanisms to the network.
ROAD SAFETY ENGINEERING	OE801CE	OE801CE .1 Prepare accident investigation reports and database. OE801CE .2 Apply design principles for roadway geometrics improvement with various types of traffic safety appurtenances/tools OE801CE .3 Understanding Road Signs and Traffic signals OE801CE .4 Manage traffic including incident management OE801CE .5Illustrate the applications of ITS
PROJECT WORK – II	PW 861 IT	PW 861 IT.1 Demonstrate the ability to synthesize and apply the knowledge and skills acquired in the academic program to the real-world problems. PW 861 IT.2 Evaluate different solutions based on economic and technical feasibility PW861IT.3 Effectively plan a project and confidently perform all aspects of project management PW861IT.4Demonstrate effective written and oral communication skills

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN(Autonomous)

Chapel Road, Abids, Hyderabad - 500001

B. E.(IT) VII -Semester II-Mid Examination(CIE)- 25th January, 2023 Big Data Analytics [PC 702 IT]

Set-1

[Time: 1 Hour]

[Time:3:00PM - 4:00PM]

[Max. Marks: 20]

Note: 1) Answer all questions in Part - A.

2) Answer any two questions in Part - B.

1.	PART - A What are the different ways to construct version stamps in NoSQL?	(Marks: 3×	2 =6)
~		2	CO-3 PO-1	BTL 1
and the second	Compare MapReduce1 and YARN.	2	CO-4 PO-1	BTL 2
3,	What are the different Hive services?	2	CO-5 PO-1	BTL 1
4.	PART - B Answer the following: a) What are the verious distributions:		(Marks: 2	<7 =14)
	a) What are the various distribution models in NoSQL? Explain.b) Explain the aggregate data models.	4	CO-3 CO-3	BTL 1
5.	Explain anatomy of YARN Map Reduce job run.		PO-1 CO-4	BTL 2
6.	Answer the following:	7	PO-1	BTL 2
	a) What are four types of functions in pig? b) Explain Hive architecture.	3	CO-2 PO-1	BTL 1
	- January Company of the Company of	4	CO-1 PO-1	BTL 2

Prepared by:

Mrs. N. Niharika (IT)

Asst. Prof.

Stanley College of Engineering and Technology for Women

(Autonomous)
(Affiliated to Osmania University)
(Accredited by NAAC with"A" Grade, Accredited by NBA)
Chapel Road, Abids, Hyderabad – 500 001

Department of Business Management

Program Educational Objectives (PEOs)

PEO1: To transform students into effective professionals.

PEO2: To equip the students to adapt a rapidly changing environment.

PEO3: To Prepare the students for immediate employment and for life-long learning in advanced areas of management.

Program Specific Outcomes (PSOs)

PSO1: Students should exhibit knowledge of management principles and organizational behavior.

PSO2: Students should demonstrate the contemporary Marketing, Financing and manpower management skills.

Program Outcomes (POs)

PO1: Managerial Knowledge: Demonstrate knowledge and understanding of the management concepts and apply in contemporary professional managerial practice

PO2: Human Values and Ethics: Demonstrate the knowledge of human values such as truth, honesty and loyalty by understanding the impact of management practice and Apply ethical principles and commit to professional ethics and responsibilities and norms of the management practice

PO3: Functional Area knowledge: To gain the knowledge in Finance, HR and Marketing areas with an understanding of practical application as per the contemporary needs, trends and changes

Stanley College of Engineering and Technology for Women

(Autonomous)

(Affiliated to Osmania University)
(Accredited by NAAC with"A" Grade, Accredited by NBA)
Chapel Road, Abids, Hyderabad – 500 001

Department of Business Management

Program Educational Objectives (PEOs)

PEO1: To transform students into effective professionals.

PEO2: To equip the students to adapt a rapidly changing environment.

PEO3: To Prepare the students for immediate employment and for life-long learning in advanced areas of management.

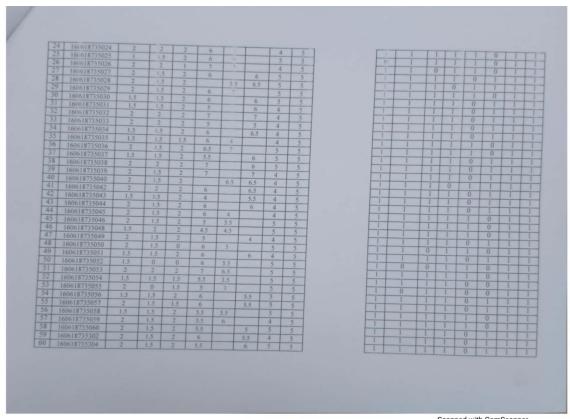
Program Specific Outcomes (PSOs)

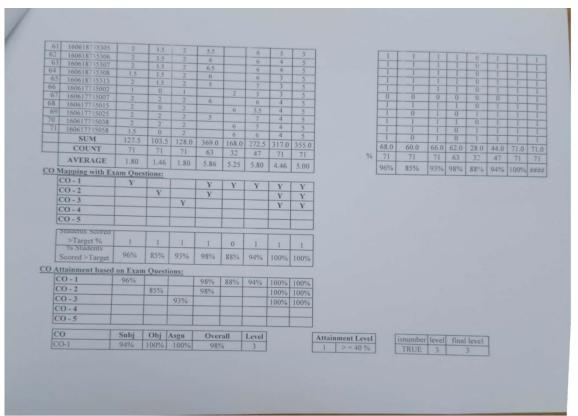
PSO1: Students should exhibit knowledge of management principles and organizational behavior.

PSO2: Students should demonstrate the contemporary Marketing, Financing and manpower management skills.

Program Outcomes (POs)

PO1: Managerial Knowledge: Demonstrate knowledge and understanding of the management concepts and apply in contemporary professional managerial practice


PO2: Human Values and Ethics: Demonstrate the knowledge of human values such as truth, honesty and loyalty by understanding the impact of management practice and Apply ethical principles and commit to professional ethics and responsibilities and norms of the management practice


PO3: Functional Area knowledge: To gain the knowledge in Finance, HR and Marketing areas with an understanding of practical application as per the contemporary needs, trends and changes

Co-Po Mapping(2021-22)

Bra	ne of the Faculty : nch & Section:	Anjun ECE :		na			Cours	e Outco	me At	municat tainmen	ion Engine	ering				AY:	2	021-2	2				
	ject; ject Code:	IAFM HS 707								272102	I AICTE	Sem:	VII			Targe	et %=	55%					
S.No	HT No.				ion No.			01	AI	7			,	Buonti	on No.			T	Γ.				
35	. Marks =>	1	2	3	4	5	6		-			1	2	3	4	5		Q1	A				
1	160618735001	2	2	2	7	7	7	5	5			1.1	1.1	1.1	3.85	3.85	6	2.00	-				
2	160618735002	2	1.5	1.5	6.5	5		5	5	1		1	1.1	1.1	3.85	3.85	3.85	2.75	2.7				
3	160618735002	2	2	2	7		6	5	5	1		i		1	1	0	0	+					
4	160618735003	1.5	1	1.5	4	5		4	5	1						Ti-	0	1		U	0		-
5	160618735004	2	1.5	2	7		7	4	5				1	1	i	1	0	- 0		-			
6	160618735006	1.5	1.5	1.5	5	5		5	. 5							1	0		-				
7	160618735007	2	1.3	1,5	-	4	6.5	5	5				1	i	0	-i-	1		-				
8	160618735008	1.5	1	2	7	7		5	5			1		1			0	1	-				
9	160618735009	2	2	2	6	-	5	5	5				0		1	0	1		-				
10	160618735010	2	2	2	7	7		5	5	1		1	1	1	1	1	0		-				
11	160618735011	1.5	2	1.5	3.5		6,5	5	5						1	0			-				
12	160618735012	1.5	1.5	2	6		6	5	5			1		1	0	0	0						
13	160618735013	1.5	0	1	5.5	4	0	3	5	-		1	1)	1	0	1		1				
14	160618735014	1.5	1.5	1.5	7		5	5	5			1	0	0	1	1	0		1				
15	160618735015	2	1	1.5	6		6	4	5			1	1		1	0	1	1.					
	160618735016	2	1.5	2	6.5		7	5	5			1	0		1	0	1						
17	160618735017	1	2	2	6.5	6		5	5			0	1	1		0	1	1					
18	160618735018	1.5 0 1.5 2 2 5 5	18735018 1.5 0 1.5 2 2 5 6	1.5 0 1.5 2 2 5 5									0	0	1	1	1	0					
	160618735019	1.5	1.5	2	5.5		6	3	5				0	1	0	0	0						
	160618735020	2	2	1.5	5	6		5	5				1	1	1	0	1						
	160618735021	2	1.5	2	5		6	5	5				1	1	1	1	0	1					
	160618735022	2	2	2	5.5		5.5	5	5				1	1	1	1	0	1	1				
4.3	160618735023	2	1	1.5	6.5		5.5	4	5			1	0	-	1	0		1	1				

Scanned with CamScanner

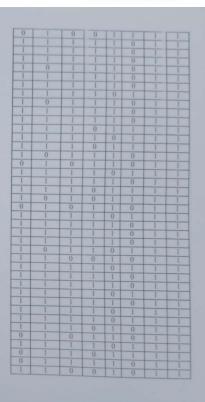
STANLEY COLLEGE OF ENGINEI RING & TECHNOLOGY FOR WOMEN Department of Electronics and Communications Engineering <u>Course Outcome Attainment</u>

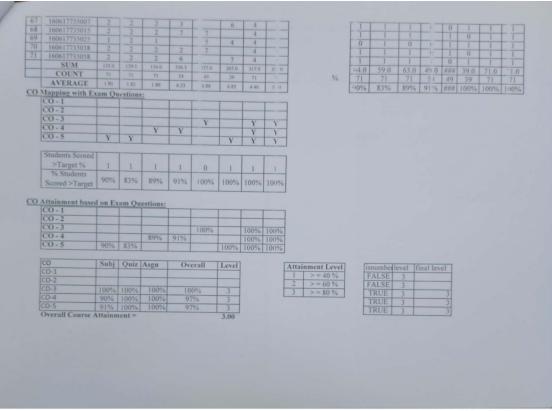
Name of the Faculty: Anjum Fathima Branch & Section: FCE 1

Subject: IAFM Subject Code:

HS 707 ME

Mid: II


AY: 2021-22


Year: AICTE Sem: VII Target %= 55%

S.No	Question No.							Q2	A2
		1	2	3	4	5	6		
Max	. Marks =>	2	2	2	7	7	7	5	5
1	160618735001	2	1	2		7	7	5	5
2	160618735002	2	1	2	7		7	5	5
3	160618735003	2	2	2	7		7	4	5
4	160618735004	2	2	2		7	7	4	5
5	160618735005	2	2	2		7	7	5	5
7	160618735006	2	2	2	7		7	5	5
	160618735007	2	2	2	7	7		5	5
8	160618735008	2	2	2		7	7	5	5
9	160618735009	2	2	2	7	7		5	5
10	160618735010	2	1	2		7	6	5	5
11	160618735011	2	1	2		7	7	5	5
12	160618735012	2	0.5	1	5.5		7	5	5
13	160618735013	2	2	2	6	7		3	5
14	160618735014	2	2	2	7	6		5	5
15	160618735015	2	2	2	7		7	4	5
16	160618735016	2	2	2		7	7	5	5
17	160618735017	2	1	2	7		7	5	5
18	160618735018	2	2	2	6		7	5	5
9	160618735019	2	2	2		7	7	3	5
20	160618735020	2	2	2		7	7	5	5
1	160618735021	2	2	2	6		7	5	5
	160618735022	2	2	2	6	7		5	5
	160618735023	2	1	2	6		7	4	5
4	160618735024	2	2	2		7	7	4	5
5	160618735025	2	2	2	7		7	5	5
	160618735026	2	2	2	7	7		4	5

	(uestio	n No.			Q2	A2
1	2	3	4	5	6		
1.1	1.1	1.1	3.85	3.9	3.85	2.75	2.75
1	0	1	0	1	1	1	1
1	0	1	1	0	1		1
1	1	1	-1	0	1	1	1
1	1	1	0	1	1		1
1	1		0	1	1	- 1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1
1	1	1	1	1	0	1	1
1	0	1	0	1	1:	1	1
1	0		0	1	1	1	1
1	0	0	1	0	1	1	1
1	1		1	_1.	0	1	1
1	1	1	1	1	0	1	1
1	1	1	1	0	1	- 1	1
1	1	1	0	1	1	1	1
1	0	1	1	0	1	1	1
1	- 1	1	1	0	1	1	1
1	1	1	0	1	1	1	1
1	1	1	0	1	1	1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1
1		U	0	1	1	1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1

	160618735027		2	1		7	-		
18	160618735028		2	2	7	7	6	5	
30	160618735029		2	2	7	7		5	
30	160618735030	2	2	2	7	7		5	
31	160618735031	2	1	2	7	7		5	_
32	160618735032	2	2	2	7	7		4	_
33	160618735033	2	2	2	6	7		4	
34	160618735034	2	2	2	7	- /	-	4	_
	160618735035	2	1	2	6	7	7	4	
36	160618735036	2	2	2	7	7		4	
	160618735037	2	2	2	7	7		5	
38	160618735038	2	2	2	1			5	
39	160618735039	2	2	2	7	7	7	5	
40	160618735040	2	2	2	-		7	4	
41	160618735042	2	1	2	7	7	7	-4	
42	160618735043	1	2	1	7	7		4	
43	160618735044	2	2	2	7	7		-4	
44	160618735045	2	2	2		_	7	4	
45	160618735046	2	2	2	7	7		4	
46	160618735048	2	1	2		7	7	5	
47	160618735049	1	2	1	7	7	7	5	
48	160618735050	2	2	2	7	7		4	
49	160618735051	2	2	2	7	7	7	5	
50	160618735052	2	2	2	7	7		4	
	160618735053	2	2	2	-	7		5	
	160618735054	2	1	2	6	1	_	5	
53	160618735055	2	2	1	3	7	7	5	
54	160618735056	2	2	2	7	-/-	7	5	
55	160618735057	2	2	2	6	7		5	
56	160618735058	2	2	2	6	7		5	
	160618735059	2		2	7	- /	7	4	
58	160618735060	2	2	2	6	7	-/-	5	
59	160618735302	2	2 2	2	7	1.	7	4	
60	160618735304	2	2	2	7		7	5	
61	160618735305	2	2	2	3	6	- /-	5	
62	160618735306	1	2	1	4	6		4	
63	160618735307	2	2	2	5		7	4	
64	160618735308	1	2	2		7	7	3	
65	160618735313	1	2	2	6	6	- 1	3	
66	160617735002	2	2	1	3	7		3	

	1	COLLEGE OF ENGINEERING & Department of Electronics and Com	munication	Engineering
N		Course Outcome At	tainment	
Name o		Anjum Fathima		AY: 2021-22
Subject		F.CE-1	Sem:	
Subject		IAFM		Target % 55%
Subject	Code:	11S 707 ME	AICTE	
SI No	REG. NO	NAME OF THE STUDENT	TOTAL	1
SLANO	REG. NO	THE STODENT	TOTAL	1 - T
		Max Marks	10.00	Is > Target% 5.5
1	160618735001	A. JAHNAVI	7	1
2		AFREEN NIKHAT	9	1
3	160618735003	AMMANABOLU AAKANKSHA	8	1
4	160618735004	AMSAM SAHITHI	8	i i
5	160618735005	A TURI ASWINI	6	1
6	160618735006	ATHMAKURI SUKSHMATA	6	1
7	160618735007	AYESHA SIDDIQA	8	1
8	160618735008	AYYAPUSETTY SAI PRANATHI	6	1
9	160618735009	B N MADHURI	5	0
10		BHARANI RACHARLA	6	1
11	160618735011	BOGARAJU SWATHI	5	0
12	160618735012	BORRA RACHANA	5	0
13	160618735013	CHILUVERU DIVYA	8	1
14		CHINTAKAYALA MOUNIKA	8	1
15		CIRASINAGANDLA POOJITHA	9	1
16		CHALLA PRAVALLIKA	10	1
17	160618735017	D NEHA REDDY	9	1
18	160618735018	DEVARAPALLI PRAVALLIKA	7	1
19		DIDUGU VYSHNAVI	8	1
		DOREPALLY SWETHA	9	1
21	160618735021	DURSHETY SATHVIKA	8	1

22	160618735022 1	ERANI LAKSHMI PRA -ANNA	8 1
23	160618735023	AREESA KAZIMI	6
24	160618735024 (9
25	160618735025 (8
26	160618735026 (6
27		ANESHULA SRUTHI	7
28	160618735028	ОРИ ВНООМІКА	5
29		ORTHI MADHULIKA	8
30	160618735030 1	I G MANASA	6
31	160618735031	HAFSA AHMED	9
32	160618735032	HIMANSHI AGARWAL	10
33	160618735033	J. NAGA ANANDINI	5
34	160618735034	JAGABATHUNI SRI POOJITHA	7
35	160618735035	K PRANATHI	6
36	160618735036	K.B.L.P. SREEJA	8
37	160618735037	KASALA SAHITHI	8
38	160618735038	KOSIREDDY MEGHANA REDDY	10
39	160618735039	K. JAHNNAVI	8
40	160618735040	LINGAM DIVVYASREE	8
41	160618735042	M. SAI NIKITHA	7
42	160618735043	M. VARSHA	6
43	160618735044	MAKTHALA RITHIKA	8
44	160618735045	MAMIDIPAKA ANURADHA	8
45	160618735046	MENGANI LAXMI PRASANNA	8
46	160618735048	MYNENI VENKATA GEETHIKA	6
47	160618735049	NALLAPU SREEJA	9
48	160618735050	NELAPUDI DHANALAKSHMI	8
49	160618735051	P AKHILA	6
50	160618735052	PASARAGONDA RAVALIKA	6
51	160618735053	PASHAM NEHA	7
52	160618735054	POGUL SAI PRIYA	6
53	160618735055	PONNALA SHIVANI	5
54	160618735056	PULIPATI SNEHA NANDINI	7

	160618735057 EDDY SUMANA SRI	6		1
56	160618735058 SREE HARSHINI SIRIPH EDDY	6		1
57	160618735059 \ AGULAPURAM PRAN ETHA	6		1
58	160618735060 \ OUSUF AAFREEN	5		0
59	160618735302 NIOGILI AKHILA	6		1
60	160618735304 FANTANGI SRI HARI PRIYA	6		1
61	160618735305 PATRI UMA MAHESHWARI	7		1
62	160618735306 POTHUGANTI SASYA REDDY	9		1
63	160618735307 R NAMRATHA	8		1
64	160618735308 \ RADHIKA	6		1
65	160618735313 BANAPURAM ASHWINI	6		1
66	160617735002 ALICHALAVYSHALI	0		0
67	160617735007 BHARATHULA LAHARI	5		0
68	160617735015 Nivruthi	0		0
69	160617735025 JAKKIDI HARSHITHA	6		1
70	160617735038 NEERATI VANI	7		1
71	160617735058 ALEKHYA VEMU	6		1
	Sum	489	SUM	61
	Avg	8.8909091	Count	71
			%	86%
	No. of students scored more than target %	61	Attainment Level	Percentage
	No. of students present	71	1	>= 40 %
	Percentage of students scored more than target %	86%	2	>= 60 %
	Attainment level	3.00	3	>= 80 %

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN Department of Electronics and Communication Engineering <u>Course Outcome Attainment</u>

Anjum Fathima ECF1 IAFM HS 707 ME

Name of the Faculty: Branch & Section: Subject: Subject Code:

AICTE

Sem: VII

Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam
COI	3.00		3.00	3.00
CO2	3.00		3.00	3.00
CO3	3.00	3.00	3.00	3.00
CO4		3.00	3.00	3.00
CO5		3.00	3.00	3.00

Attainment level of Course Outcome

	Course Outcomes	Attainment Leve
COI	Students can understand various phases of product life cycle and design various plants and product layouts.	3.00
CO2	Students will be able to analyze various types of manufacturing systems; plant layout ,optimization problem.	3.00
CO3	Students can understand the quality control ,process control.	3.00
CO4	Students will be able to analyze the material control ,appreciate the importance.	3.00

Scanned with CamScanner

Itanacial manageme	t techniques of capital budy	ogy used in ting and	
	tianacial manageme	Students will be able to snow the difference termin- fianacial manageme techniques of capital budy	Students will be able to snow the difference terminogy used in fianacial manageme a techniques of capital budy sting and

Average

3.00

Overall course attainment level

3.00

Anjum Fathoma

STANLLY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN
Department of Electronics and CommunicationEngineering
Program Outcome Attainment

Name of the Faculty
Branch & Section:
Subject:
Subject Code:
Branch & Section:
ECE-1
IAFM
Subject Code:
HS 707 ME

AY: 2021-22

Sem: VII AICTE

Course outcome attainment

СО		Mid		Univ
COI	3.00		3.00	3.00
CO2	3.00		3.00	3.00
CO3	3.00	3.00	3.00	3.00
CO4		3.00	3.00	3.00
CO5		3.00	3.00	3.00

CO-PO mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3								3	2	
CO2	2	3	3	2								1	3	
CO3	2	3	3	3.								2	2	
CO4	3	2	3	3								3	2	
CO5	3	3	2	2								3	2	
Avg	2.40	2.80	2.80	2.60								2.40	2.20	

PO-ATTAINMENT

	CO	PO1	PO2	PO3	PO4	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
	CO1	6	9	9	9								9	6	
Z L	CO2	6	9	9	6								3	9	
EKN	CO3	6	9	9	9								6	6	
2	CO4	9	6	9	9								9	6	
3	CO5	9	9	6	6								0	6	-
_	CO1	6	9	9	9								0	6	-

Scanned with CamScanner

	CO2	6	9	9	0		3	9			
8	CO3	6	9	9	9		6	6			
UNIVERSI	CO4	9	6	9	9		9	6			
	CO5	9	9	6	6		9	6			
	COI	3	3	3	3		3	3			
151	CO2	3	3	3	3		3	3			
2 -	CO3	3	3	3	3		3	3			
OVERALL	CO4	3	3	3	3		3	3			
01	CO5	3	3	3	3		3	3			
1	Attainment 12/09/22	3.00	3.00	3.00	3.00		3.00	3.00	1.	79123	

Co-Po Mapping (2022-23)

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

Department of Information Technology

Course Outcome Attainment

Name of the Faculty: Ms. Anjum Fathima

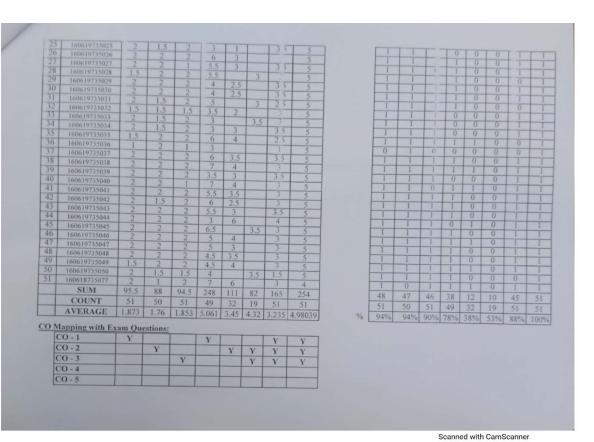
Internal I

AY: 2022-23

Branch & Section: F.CE

Year: AICTE Sem: VII SEM

Subject:


IAFM

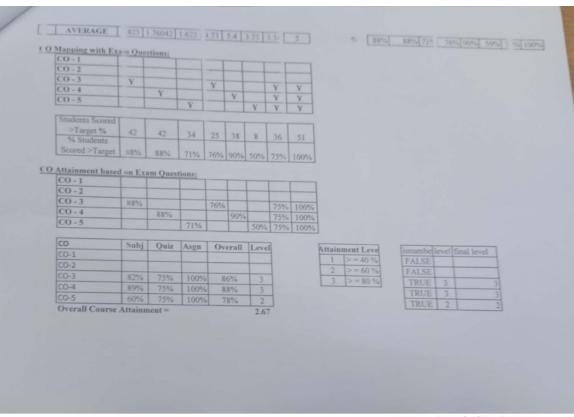
Subject Code: HS701ME

Target %= 55%

N.No	HT No.			Questi	on No.			Q1	A1
		1	2	3	4	5	6		
Max.	. Marks ==>	2	2	2	7	7	7	5	5
1	160619735001	1.5	1	2		3	5.5	4.5	5
2	160619735002	2	1.5	2	6.5		3	4	5
3	160619735003	2	1.5	2	4	4		3.5	5 5 5 5 5 5
4	160619735004	2	1.5	2	4		3	3.5	5
5	160619735005	2	1.5	2	7		4	3.5	5
6	160619735006	2	2	2	7		6.5	3.5	5
7	160619735007	1.5	1.5	2	6	3		3	5
8	160619735008	1.5	2	2	4	5		3.5	5
9	160619735009	2	2	1.5	6.5		3	3	5
10	160619735010	2	1.5	2	5.5		5.5	3.5	5
11	160619735011	2	1.5	2		2.5	7	4	5
12	160619735012	2	2	1.5	5		3	3.5	5
13	160619735013	2 2 2	1.5	2	3		5	3.5	5
14	160619735014	2	2	2	7	7		4	5
15	160619735015	2	2	2 2 2	5		4.5	3.5	5
16	160619735016	2	1.5		5		4.5	4	5
17	160619735017	2	1.5	2	7	5.5		4	5
18	160619735018	1		1	1			2	5
19	160619735019	2	2	2	7	1.5		3.5	5
20	160619735020	2 2	2	2	3	2		3	5
21	160619735021	2	1.5	2	7		6.5	4	5
22	160619735022	1	1	1	2	1		3	5
23	160619735023	2	2	1.5	7	5		3.5	5
24	160619735024	2	2	2	7		4.5	3.5	5

	(Questi	on No.			Q1	Al
1	2	3	4	5	6		
1.1	1.1	1.1	3.85	3.85	3.85	2.75	2.75
1	0	1	0	0	1	1	1
1	1	1	1	0	0		
1	1	1	1	1	0	1	1
1	1			0	0		1
1	1	1	1	0	1	1	1
1		1	1	0	1	1	1
1	1	1	1	0	0	1	1
1	1	1	1	1	0	1	1
1	1		1	0	0	1	1
1	1			0	1		1
1	1		0	0	1		1
1	1		1	0	0	1	1
1	1	1	0	0	1	1	1
1	1	1	1	1	0	1	1
1	1	1	1	0	1		1
1	1	1	1	0	1	1	1
1		1	1	1	0	1	1
0	0	0	0	0	0	0	1
1	1	1	1	0	0	1	1
1	1	1	0	0	0	1	1
1	1	1	1	0	1	1	1
0	0	0	0	0	0	1	1
1	1	1	1	1	0	1	1
1	1		1	0	1		

[Students Scored]								
>Target % % Students	48	47	46	38	12	10	41	51
Scored >Target	94%	94%	90%	7896	380/			- 01
CO - 1	an CX	am Que	stions:	-010	20.20	2339	88.9	100%
CO-2	94%			78%			88%	100%
CO - 3		94%	0.00		38%	53%	88%	100%
CO-4			90%			53%	88%	100%
CO - 5					_	-		


CO	Subi	Obi	Asgn	C	1.
CO-1		_	-	Overall	Level
	86%	88%	100%	91%	3
CO-2	61%	88%	100%	83%	
CO-3	-	88%			3
CO-4	7 1 7 10	00%	100%	87%	3
CO-5			-		-

CO-4			10076	0.770	0
CO-5					
Overall Course /	Attainm	ent =			3.00

nent Lev	isnumbe	level	final lev
-= 40 %	TRUE		
-= 60 %	TRUE	3	
= 80 9	TRUE	3	
	######		

Fī	160619735021	T 2	1 2						
1 2			2	2		_	7		1 5
1 3	160619735023	1 2	2	2	0	.5 6	.5	-	1 5
4	160619735024	1 2	2	1			5	3.	5 5
5	160619735025	1 2	2	2	_	5	7	2	5
6	160619735026	1 2	2	1.3	5	3	.5 3	3 1	5
.7	160619735027	2	2	2	- 3	5	5	3.	5 5
-8	160619735028	1	2	1			7 4	2.	5 5
9	160619735029	- 1	1	0.5	3.	5 4	1	2.	
30	160619735030	-	-						5 5
31	160619735031	2	2	1	2.	5 4		2.5	5 5
32	160619735031	2	2	2	6	7		4	5
33	160619735032	2	2	2	4	4		3.5	
34	160619735034	2	2	2		4	3	1	5
35	160619735034	2	1.5	2		4.	5 3	4	5
36	160619735036	2	2	2	5	5		4	5
37	160619735036	2	2	2	3			4	5
38		2	2	2		5	7	4	5
39	160619735038	1.5	1	1		4.5	5	4.5	5
40	160619735039	2	2	2		5	2	3.5	5
41	160619735040	2	2	2	5	5		3.5	5
-	160619735041	2	2	2		5	3	4	5
42	160619735042	1	1	1		3.5		4	5
_	160619735043								5
44	160619735044	2	1.5	1.5	3	5		3	5
45	160619735045	2	2	2		7	3	4	5
46	160619735046	2	0.5	0.5	3	4		3	5
47	160619735047	2	2	2	5.5	5.5		3.5	5
18	160619735048	2	2	2	5.5	1.5		3.5	5
19	160619735049	1.5	1.5	2	5			2.5	5
0	160619735050	2	2	2	7			4	5
1	160618735077	1	1.5	1	6.5	4		2.5	5
	SUM	87.5	84.5	78	156	225	60	161	255
	COUNT	48	48	48	33	42	16	48	51

-												
	1	1		1					0	T	-	1
-	0	1		1	-		1		0	T		1
	1	1		0			1			T		1
-	1	1		1	1		1		0	T		1
	1	1		1	0		0		0			1
		1		1	. 1		0			П		-1
	_	1		0	0		1		1	1		1
0		0		0	0		1)	- 1		1
0		0		0	0	П	0	1)	11		1
1		1		0	0	T	1	()	()	7	1
1		1			1	T	1	0		1	1	1
1		1			1		1	0		1	1	1
1		1			0	Т	1				1	1
1		1	1		0	T	1	0			T	1
1		1	1		1	T	1	0		1	T	1
1		1	1		0	T	0	0		1	T	1
1		1	1		0	T	1	1	1	1	T	1
1		0	0		0		1	1	\top	1	T	1
1		1	1		0	Т	1	0	1	1	T	1
1		1	1		1		1	0	1	1	T	1
1		1	1		0		1	0		1	T	1
0		0	0		0		0	0	T	1	Т	1
0		0	0		0		0	0	T	0	Т	1
1		1	1		0		1	0		1		1
1		1	1		0		1	0		1		1
1		0	()		0		1	0		1		1
1		1	1		1			0		1		1
1		1	1		1	()	0	T	1		1
1		1	-1		1	()	0		0		1
1		1	1		1	(0		1		1
0		1	0		1	1	_	0	T	0		1
42		42	34	1	25	3		8		36	5	51
48		48	48	1	33	4	2	16	1	18	5	1

STANL: Y COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN Department of Information Technology

Course Outcome Attainment

Name of the Faculty: Branch & Section: Subject: Subject Code: Ms. Anjum Fathin a ECE IAFM AY: 2022-23 AICTE VII SEM Sem Target % 55% HS701ME

		S=10,A=9,B=8,C=7,D=6,E=5,F=0	
SL.No	REG. NO	NAME OF THE STUDENT	TOTAL
-		Max Marks	10.00
1	160619735001	AFIFA RABBANI	5
2	160619735002	AIRPULA NIKITHA	6
3	160619735003	AKAVARAM SNEHA	5
4	160619735004	ALAMPALLY AKAANKSHA	7
5	160619735005	ANISETTI PRAHARSHA	7
6	160619735006	BADISHA SAI KAVYA SREE	7
7	160619735007	BOPPU SAI SHRIYA	6
8	160619735008	BOTUMANCHI PRAJWALA	6
9	160619735009	BYSANI LAKSHMI PRASANNA	6
10	160619735010	CHINTALA MANISHA	7
11	160619735011	CHOLLETI MANASWINI	7
12	160619735012	DEVUNI VAISHNAVI	5
13	160619735013	G SANDHYA	6
14	160619735014	GANDLA JAYA SREE	8
15	160619735015	GINNE VARSHA	7
16	160619735016	GODHA NIKHITHA	7
17	160619735017	GUDISEVA BHAVANA	7
18	160619735018	GULLEPELLI SRIJA	0
19	160619735019	HAJERA FATHIMA	6
20	160619735020	JANNAMARAJU SRIPURNA	5

Is > Target% 5.5 0

21	16061973 (21	JELLAPURAM USHSMITHA	7		
2	16061973 (22	KOPPULA SAI - KUTHI	0		
23	16061973 - 123	KANDULA SAH THI	7		
24	16061973: (24	KANKANALA I IAVANI	7		
25	16061973: 125	KATTUPALLI P AGNA ANGELINE	5		
26	16061973: 126	KONDURI BHA ANI	6		
27	160619735-127	MUCHARLA SA SREE	6		
28	160619735-128	MUTHE SRITEJ \	6		
29	160619735/129	NALLI ELENA SHERENE	0		
30	160619735430	NALUMACHU MAHALAKSHMI	5		
31	160619735/131	PABBA SHRAV ANTHI	6		
2	160619735032	PALREDDY VAISHNAVI	6		
33	160619735033	PATHLAVATH EJA SRI	6		
34	160619735034	RAJEERKULA KHYATHI	6		
35	160619735035	RAVADA MOUNIKA	7		
36	160619735036	SAMREEN	5		
37	160619735037	SATHELLI SHRUTHI	7		
38	160619735038	SHAIK HADIYA	7		
39	160619735039	SIRIPURAPU SUNIDHI	7		1
40	160619735040	SRIKARI SAYARWAR	6		1
41	160619735041	SYEDA FAYEZA ALI	7		1
2	160619735042	THINETI BINDU	6		1
43	160619735043	TIRUMALA PALANANJANI	6		1
14	160619735044	V SAI CHANDANA	7		1
15	160619735045	VADLA SWATHI	6		1
16	160619735046	VATTIKUTI RAMYA	6		1
7	160619735047	VILLURI LAKSHMI SIVANI	6		1
8	160619735048	VODELA APOORVA	6		1
9	160619735049	YELE SRIVANI	5		0
0	160619735050	VEMULA MOUNIKA REDDY	6		1
1	160618735077	G.Mounika	5		0
		Sum	298	SUM	39
		Avg	5.2280702	Count	51

39
51
76%
2

Attamment	Percentage
1	>= 40 %
2	>= 60 %
3	>= 80 %

Scanned with CamScanner

STANLEY FOLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN Department of Information Technology Course Outcome Attainment

Name of the Facult : Ms. Anjum Fathim.

Branch & Section: ECE
Subject: IAFM
Subject Code: HS701ME AY: 2022-23 Year: AICTE Sem: VII SEM

Outcomes	Exam	Internal	Exam	University Exam
CO1	3		3	2
CO2	3		3	2
CO3	3	3	3	2
C04		3	3	2
C05		3	3	2

	Course Outcomes	Attainment Leve
COI	To demonstrate various organization structures and design various plant and product layouts, IBLT 3, 61	2.30
CO2	To analyze the principles of work study, method study, and importance of performance appraisal in the work	2.30
CO3	To demonstrate quality of work and quality control systems through SOC tools, IBLT 31	2.30
CO4	To evaluate PERT/CPM techniques for projects of an enterprise and understand the concepts of various	2.30
CO5	To understand the different techniques of capital budgeting and various types of costs and leverages	2.30

Overall course attainment level

2

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN Department of Information Technology Program Outcome Attainment

 Name of the Faculty
 Ms. Anjum Fathima
 VY:
 2022-23

 Branch & Section:
 BCE
 Year:
 IV

 Subject:
 IAFM
 Year:
 VII SEM

 Subject Code:
 HS701ME
 VII SEM

Course outcome attainment

CO		IInd Mid	Int	Uni
COI	3		3	2
CO2	3		3	2
CO3	3	3	3	2
CO4		3	3	2
CO5		3	3	2

CO-PO mannin-

O I O map	-	_												
CC	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO	1 2	3	3						2			3	2	
CO	2 2	3	3			2			3			3		
CO	3 3	2	3		3				3			3		
CO	4	3	3						-		2	-		
CO.	5	3	2	3			2			1	2	-	-	-
Av	2 2.33	2.80	2.80	3.00	3.00	2.00	2.00	-	2.67		3.00	3,00	2.00	+

PO-ATTAINMENT

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	DSO1	DSO2
CO1	6	9	9				-		6	1010	1011	012	-	F502
CO2	6	9	9			6			0			9	0	
CO3	9	6	9		9	-			0	-		9		-
CO4		9	9				-		7		-	9		1
CO5		9	6	0			-	-	-	-	9		-	
COI	4	6	6	-			0	-	1	-	9			
	CO1 CO2 CO3 CO4 CO5	CO1 6 CO2 6 CO3 9 CO4 CO5	CO1 6 9 CO2 6 9 CO3 9 6 CO4 9 CO5 9	CO1 6 9 9 CO2 6 9 9 CO3 9 6 9 CO4 9 9 CO5 9 6	CO1 6 9 9 CO2 6 9 9 CO3 9 6 9 CO4 9 9 CO5 9 6 9	CO1 6 9 9 CO2 6 9 9 CO3 9 6 9 9 CO4 9 9 CO5 9 6 9	CO1 6 9 9 CO2 6 9 9 CO3 9 6 9 9 CO4 9 9 CO5 9 6 9	CO1 6 9 9 CO2 6 9 9 CO3 9 6 9 9 CO4 9 9 CO5 9 6 9	CO1 6 9 9 6 9 9 6 9 6 9 9 6 9 9 6 9 9 6 9	CO1 6 9 9 6 9 6 9 9 6 9 9 6 9 9 9 9 9 9 9	CO1 6 9 9 6 9 6 9 9 6 9 9 6 9 9 6 9 9 9 9	CO1 6 9 9 6 9 6 9 9 6 9 9 6 9 9 6 9 9 6 9	CO1 6 9 9 6 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9	CO1 6 9 9 6 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9

32	CO2	-	6	6		-	4		,	-	6	-	
UNIVERSI	CO3	-13	4	6		6			1		6	-	
Z	CO4	-	6	6						6	-	-	
3	CO5		6	4	6			4		6	2	2	
	CO1	2	2	2					2		2	-	
7	CO2	2	2	2			2		2		2		
5	CO3	2	2	2		2			2		- 4		
OVERALL	CO4		2	2						2	-		
0	CO5		2	2	2			2		2	2.20	2.30	
	Attainment	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	
T	Logh	>	2100	12100		2.00							(Islalis
Fac	ty Signature	>											нов
Fac	of only	>											нов
Fac	of only	>											нов
Fac	of only	>											нов

Sample Question paper with Bloom's Taxonomy

	D	-11.7	Pialad No	6 1 D#	2722
	н		Ficket No-	Code: R41	
		Si	tanley College of Engineering and Technology for	Women	(A)
			MBA- II Semester (Main) Examinations July-202	3	
	-		Business Research Methods		
	Ii	me:	3 hours	Max.,Marks	s:60
			PART-A		
	-		Answer all questions (Compulsory)	5 X 2=1	
	2.		xplain exploratory research.		COI
	4.	X	alculate Mean deviation for the following data by using Arithmetic mea: 68,49,32,21,54,38,59,66,41	an. L3	CO2
	3.		That is Stratified Random Sampling?	LIC	C(73
	4.		xplain Confidential Interval	LIC	
	5.	DI	iscuss the concept of Correlation Analysis.	L2 (005
	No	te: A	PART-B Answer all questions (Compulsory)	5 V 10= 5	50714
	6	a.		Es.	L2 C
		Ь.	OR Find out the Mode for the data given below:	糖	.3 CC
			Class Interval 0-5 5-10 10-15 15-20 20-25 25-30	30-35	
	7	a.	Define Kurtosis. What are the different types of Kurtosis? Explain.	L	2 CC
		ь.	Calculate the Out of D. C. OR		
			Value 15-25 25-35 35-45 45-55 55-65 65-75 75-85	85-95 L	ن د د
			Freque 32 38 45 98 122 80 50	25	
	8	a.	Define Data Discuss the various methods of data collection.	L	4 CO
_		b.	Explain various Probabilistic sampling methods.	1.	5 00
	9	a.	A group of 5 patients treated with medicine A weigh 42 30 18 co		5 CO
			Second group of 7 patients from the same hospital treated with medicine B v $38,42,56,64,68,69$, and 62 kgs. Do you agree with the claim that medicine I increases the weight significantly? (Use $\alpha=5\%$)		
		ь.	Write briefly about the various concepts used in hypothesis testing.		
	10	a.	rind both regression lines to the following		0.04
			Mean (X)=15 Mean (Y)=110 Variance (X) =25 Variance (Y) =625 and r=0.81	LA	CO.
		b.	OP	*	
			Find Karl Pearson's coefficient correlation to the following: X 48 39 65 80 73 60 52	L3	CO5
			Y 10 50 12 25 90 60 52	-	

Hall Ticket No.

Code: 223104/I

STANLEY COLLEGE OF ENGINEERING AND TECHNOLOGY FOR WOMEN (A) Chapel Road, Abids

MBA-I-Semester (Main) Semester End Examinations, March-2022

Business Law and Ethics

Time: 3 Hrs

Max. Marks: 60

PART-A

5 X2=10 M

Note: Answer all questions (Compulsory)

Write short notes on the following.

- 1. Legality of object.
- 2. Offer.
- 3. Article of association.
- 4. Quasi contracts.
- 5. Consumer Redressal commission.

PART-B

5X10=50 M

Note: Answer all questions

- 6. a) How would you express that Contract without consideration is void?
 - b) How can you sort the Difference between coercion and undue influence?
- 7. a) How can you sort the difference between the duties of bailor and bailee?

 OR
 - b) What are the essential features of contract of guarantee?
- 8. a) What are the features of a company?

OR

- b) Rani is a wealthy lady enjoying large dividend and interest income she has informed 3 private companies in agreed with each of them to hold a block of investment as an agent for it income received was credited in the accounts of a company but the company founded back the amount to her as a pretended loan. This way she divided her income into three parts in a bit to reduce her tax liability. Discuss the legality of the purpose for which the three companies were formed.
- 9. a) How would you express the law relating to IPR?

OR

- b) How would you sort the difference between Arbitration and Conciliation?
- 10. a) What are ethical considerations?

OR

b) What are the possible outcomes of principles of corporate governance?

Sample copy of a course showing all Course Objectives and Course Outcomes

Course Code		Core/Electiv					
MB101	Ma	Core					
December	Co	ntact ho	urs per w	eek	CIE	SEE	Condito
Prerequisite -	L	T	D	P	CIE	SEE	Credits
a verso M	5		((*))	00 Ex	40	60	5

Course Objectives:

- To provide an understanding about individual and group behavior.
- To understand the implications of organizational behavior on the process of management.
- To evaluate the appropriateness of various Leadership styles towards Conflict Management

Course Outcomes:

- Imbibe the key management process and various Approaches to Organization Structure
- Impart knowledge on Decision-making, its models and importance of planning in the organizations
- Analyze the psychological states of an employees and motivation theories towards their rate of success in the organizations
- 4. Identify various models of OB and the conflict models in the organization
- Ideologize the organization design, culture and climate including the emerging aspects of Organizational Behaviour

Unit - I: Introduction to Management

Management Process and Functions, Scientific and Modern Management, 3D Model of Managerial Behavior - MBO - MBWA - Line and Staff - The Peter's Principle - Parkinson's Law - Main Approaches to Organisation Structure-Management - Classical, Human Relations, Systems and Contingency Approaches, Hawthome's Experiments - Human Engineering.

Unit - II: Planning and Decision Making

Decision Making and Negotiations: Approaches to Decision making - Rational, Behavioral, Practical, and Personal Approaches - Open and Closed Models of Decision Making, Types and steps in planning, Authority, Responsibility, Centralisation, Decentralisation and Recentralisation, Bureaucracy.

Unit - III: Organization Behaviour

Psychological contract – Personality Traits, Big 5 personality traits, MBTI inventory, the Process of Perception – Perceptual distortions and errors, Kelly's personal construct Theory, Motivation – Content Theories: Maslow, Alderfer, Herzberg, McClelland Process Theories: Vroom, Porter and Lawler, Equity Theory – Goal Theory – Attribution Theory.

Unit - IV: Group Dynamics and Leadership

Models of OB - Autocratic, Custodial, Supportive, Collegial and System Models, Transactional Analysis, Johani Window, Group Dynamics: Typology of Groups - Conflicts in groups - The nature of conflict - Reactions to conflict - A model of conflict. Trait and Behavioral Approaches to Leadership, Managerial Grid, Path-Goal Theory, Vroom's Decision Tree Approach to Leadership - Hersey and Blanchard Model

Unit - V: Emerging aspects of OB

Organisation Design, organisation culture and organisation climate. Stress Management and Psychological Counseling for Pandemics, Job loss, Mergers & Acquisitions Management of change and organisation development. Organization Citizenship Behavious Communication — Emerging aspects of OB in Industrial Scenario.

Essential Books:

- Harold Koontz and Heinz Weihrich, 2010, Essentials of Management, TMH.
- Michael A. Hitt, J. Stewart Black, and Lyman W. Porter 2010, Management, Pearson.

Suggested Books:

- Curtis W. Cook and Phillip L. Hunsaker, 2010, Management and Organizational Behaviour, Mc Graw - Hill Irwin.
- Robbins & Judge, 2010, Organisational Behaviour, Prentice Hall of India.
- Gregory Moorhead and Ricky W. Griffin 2010, Organisation Behaviour, Biztantre.
- VSP Rao, V. Harikrishna 2010, Management Text and Cases, Excel Books.
- K. Aswathappa 2010, Organisational Rehaviour Text, Cases and Games, Himalava Publishing House.
- UdaiPareek 2010, Understanding Organisational Rehaviour, Oxford University Press.
- Lauriel J Mullins, 2010, Management & Organisational Behaviour, Pearson.
- Robin Finchem and Peter Rhodes 2010, Principles of Organisational Behaviour, Oxford University Press.
- B.R. Virmani, 2010, Managing People in Organisations, Response Books.

2.6.1 The institution has stated learning outcomes (programme and course outcome)/graduate attributes which are integrated into the assessment process and widely publicized through the website and other documents and the attainment of the same are evaluated by the institution.

List of PO's,PSO's,PEO's

Program Outcomes as defined by NBA (PO)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Stanley College of Engineering and Technology for Women

(Approved by AICTE, Accredited by NBA, NAAC 'A', UGC Autonomous)
Abids, Hyderabad, Telangana – 500001

Department of Artificial Intelligence & Data Science Department PEO's and PSO's

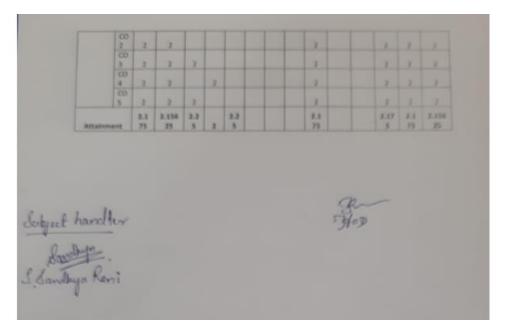
Program Educational Objectives: (PEO's)

PEO1: To provide graduates with the proficiency to utilize the fundamental knowledge of basic sciences, mathematics, artificial intelligence, data science and statistics to build systems that require management and analysis of large volume of data.

PEO2: To enrich graduates with necessary technical skills to pursue pioneering research in the field of AI

PEO3: To encourage students to think critically, develop innovative skills, expose them to an array of ideas and information through numerous technical events, hackathons and quality internships.

Program Specific Outcomes: (PSO's)


PSO1: To instill interest and curiosity in students in the field of AI and Data Science through project based learning.

PSO2: To provide a concrete foundation and enrich their abilities to qualify for Employment, Higher studies and pursue Research in Artificial Intelligence and Data science with ethical values.

PSO3: To promote ethical and responsible AI practices for the benefit of humanity; and to harness AI for a positive societal impact & meet global standards.

CO-PO Mapping

						Progr	ram Ou								- T	
	me of F				Ran	9								: 2022-2	1.3	
Bra	ch &Se	ection:	AI&DS								Yea	r:III.S	iem:1			
Cou	irse Na	me: Di	BMS													
Cou	rse Ou	tcome	Attain	ment												
F	- 1	Ist	IInd		1											
	0	Mid	Mid	Int	-	niv										
	01	3	2	3		2										
	03	3	-2	3		2										
	04	-	2	2		2										
0	25		3	3		2										
CO-P	OMAP	PING:														
1	PO	PO	PO	PC	0	PO	PO	PO	PO	PO		01	PO1	PO1	PSO	PSC
1000	2	2	3	4	-	5	6	7	8	9	0	-	1	2	1 2	2
CO2	3	2			-1	1				2				2	2	1
CO3	3	2	2							2				2	2	1
CO4	3	2		1						1				2	1	1
COS	3	2	2	111						2	9			1	2	2
PO-AT	TAINN	IENT:			11000									-		
PO-AT	TAINN	PO	1		PO	PO	PC	PO	PS	1						
PO-AT	T	PO 1	РО		PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PC 11		PS O1	PSC
PO-AT	CO	PO 1	РО								9			12	01	PSC
PO-AT	co 1 co	PO 1 6		2			5				9				6	PSC
PO-AT	CO 1 CO 2	PO 1	PO 5	2			5				9			12	01	
PO-AT	co 1 co	PO 1 6		2			5				6 5			6 5	6 5	2
PO-AT	CO 1 CO 2 CO 3	PO 1 6 7.5	5	2	3	4	5				9			6	6	2.
	CO 1 CO 3 CO 4	PO 1 6 7.5	5	2	3		5				6 5			6 5	6 5	2.
INTERN AL	CO 1 CO 2 CO 3	PO 1 6 7.5	5	2	3	4	5				9 6 5 6			12 6 5 6	01 6 5 6	2
INTERN	CO 1 CO 3 CO 4 CO 5 CO	PO 1 6 7.5 9 6 9	5 6 4	2	6	4	5				9 6 5			6 5	6 5	2:
INTERN	CO 1 CO 3 CO 4 CO 5 CO 1	PO 1 6 7.5 9 6	5 6 4	2	6	4	5				9 6 5 6			12 6 5 6	01 6 5 6	2
INTERN	CO 1 CO 3 CO 4 CO 5 CO	PO 1 6 7.5 9 6 9	5 6 4 6	2	6	4	3				9 6 5 6 2 6 4			5 6 4 3	01 6 5 6 2	2.
INTERN	CO 1 CO 3 CO 1 CO 2 CO	PO 1 6 7.5 9 6 9 4 6	5 6 4 6	2	6	4	3				9 6 5 6 2			5 5 4 3	01 6 5 6 2	2
INTERN	CO 1 CO 2 CO 1 CO 2 CO 3	PO 1 6 7.5 9 6 9	5 6 4 6	2	6	4	3				9 6 5 6 2 6 4			5 6 4 3	01 6 5 6 2 6	2.
INTERN	CO 1 CO 2 CO 3 CO 2 CO 3 CO 2 CO 3 CO 2 CO 3 CO CO 3 CO CO CO 3 CO	PO 1 6 7.5 9 6 9 4 6 6	5 6 4 6 4 4	2	6	2	3				9 6 5 6 2 6 4 4 4			12 6 5 6 4 3 4 4	01 6 5 6 2 6 4	2
INTERN	CO 1 CO 2 CO 1 CO 2 CO 3	PO 1 6 7.5 9 6 9 4 6	5 6 4 6	2	6	4	3				9 6 5 6 2 6 4 4			12 6 5 6 4 3 4	01 6 5 6 2 6 4	2
INTERN AL	CO 1 CO 4 CO 1 CO 2 CO 3 CO 4 CO 4	PO 1 6 7.5 9 6 9 4 6 6	5 6 4 6 4 4	2	6	2	3				9 6 5 6 2 6 4 4 4			12 6 5 6 4 3 4 4	01 6 5 6 2 6 4 4	2

Sample Question paper with Bloom's Taxonomy and CO-PO Mapping

STANLEY * * * ** ** ** ** ** ** ** **	COLLEGE OF ENGINEERING & TECHNO (Private Un-aided Non-minority Autonomous Institution (All eligible UG courses are accredited by NBA & It Affiliated to Osmania University and Approved by AIC	LOGY FOR WOMEN (AAC with 'A' grade) TE
B.E (CME, AI	&DS) IV <u>Sem</u> Internal Examination- II	, A.Y- 2022-23
Time: 10:00-11:30	Operating System (SPC402CM) Date:28.06.23	Max Marks: 25
	Part – A	
(Answer all Questions	9)	(5*2= 10 Marks)
1. Define deadlock, star	rvation and Aging?	(2 M)
2. What is Belady's a anomaly?	nomaly? Which page replacement algorithm	suffers from Belady's (2 M)
3. What is Thrashing?	Give the reasons of thrashing?	(2 M)
4. What is File? What a	are the attributes of a file?	(2 M)
5. Define Seek time and	d Rotational latency?	(2 M)
	Part – B	
(Answer any three out	of four Questions)	(3*5= 15 Marks)
Consider the following	gorithm for deadlock avoidance ? ig page-reference string ,2,1,2,3,7,6,3,2,1,2,3,6.	(5M)
Calculate the number o	f page faults that would occur for the following	algorithms assuming
	1.FIFO 2. Optimal 3. LRU	(5M)
	and disadvantages of following file access metholi) Direct Access (iii) Indexed Access?	ods: - (5M)
	with I/O requests for the blocks on cylinders:	(31/1)
95, 181, 39,123,12,1	24,65,68 and the disk head is initially at 57.	
	umber of head movement according to SSTF, SC	
disk scheduling algo	ontom.	(5M)

By Swapna.	C
------------	---

::

Q	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Qs	Q9
o	CO3	CO1	CO4	cos	cos	CO3	CO1	COS	cos
O	PO1,2,3,5, 8,11,12,PS O1	PO1,2,3,4,6,8 ,9,10,12,P9O 1,2	PO1,2,3,4,6,8 ,9,10,12,P9O 1,2	PO1,2,3,5 ,7,12PSO 1,2	PO1,2,3,5 ,7,12PSO 1,2	PO1,2,3,5, 8,11,12,PS O1	PO1,2,3,4,6,8 ,9,10,12,P9O 1,2	PO1,2,3,5 ,7,12P9O 1,2	PO1,2,3,5 ,7,12PSO 1,2
T L	1	1	1	1	2	2	5	2	5

Sample copy of a course showing all Course Objectives and Course Outcomes

		comes for all Programmes offered by the institution are stated and icated to teachers and students.
NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
Programming for Problem Solving	SESIOICS	SES101CS 1. Describe the concept of a computer system, analyze a given problem, an algorithm, fundamental programming constructs, identify data representation formats, and describe operators and their precedence, associativity. SES101CS 2. Understand branching and loop statements. SES101CS 3. Describe the concept of homogeneous derived data types, strings, and functions. SES101CS 4. Understand pointers and heterogeneous data types. SES101CS 5.Describe the concept of file system.
Programming for Problem-Solving Lab	SES111CS	SES111CS.1.Understand the concept of basics of C, data types and variables. SES111CS.2.Understand the concept of operators, precedence of operators, conditional statements, looping statements. SES111CS.3.Explore the concept of strings, functions, recursive functions and differences between call by value and call by reference. SES111CS.4.Explore the concept of storage classes, preprocessor directives, pointes and files. SES111CS.5.Understand the concept of file handling functions, searching and sorting methods and real time applications of C.
ata Structures	SES202CS	SES202CS.1. Carryout the analysis of a range of algorithms in terms of algorithm analysis and express algorithm complex it using the O notation (Understand). SES202CS.2. Make use of recursive algorithm design technique in appropriate contexts (Apply). SES202CS.3. Represent standard ADTs by means of appropriate data structures (Understand). SES202CS.4. Select appropriate sorting technique for given problem (Understand). SES202CS.5. Select appropriate searching technique for given problem (Understand). SES202CS.6. Implement standard searching and sorting algorithms; including binary search; merge sort and quick sort; and their complexities (Apply). SES202CS.7. Design and implement linked lists, stacks and queues in C (Apply). SES202CS.8. Explain the use of basic data structures such as arrays, stacks, queues and linked lists in program design

		(Understand). SE5202CS.9. Extend their knowledge of data structures to more sophisticated data structures to solve problems involving balanced binary search trees, AVL Trees, B-trees and B+ trees, hashing, and basic graphs. SE5202CS.10. Design and implement tree structures in C (Apply) SE5202CS.11. Compare and contrast the benefits of dynamic and static data structures implementations and choose appropriate data structure for specified problem domain (Understand). SE5202CS.12. Quickly determine and explain how efficient an algorithm or data structure will be apply appropriate data structures for solving computing problems with respect to performance (Analyze).
Data Structures Lab	SES212CS	1. Understand the concept of data structures, C Programming and apply algorithm for solving problems like Sorting, searching, insertion and deletion of data. 2. Understand linear data structures for processing of ordered or unordered data. 3. Explore various operations on dynamic data structures like single linked list, circular linked list and doubly linked list. 4. Explore the concept of non linear data structures such as trees and graphs. 5. Understand the binary search trees, hash function, and concepts of collision and its resolution methods.

III SEM

NAME OF COURSE	COURSE CODE	COURSE OUTCOMES
Mathematics -III (Probability and Statistics)	SBS301MT	SBS301MT.1. Apply probability theory to solve practical problems. SBS301MT.2. Apply various probability distributions to solve practical problems, to estimate unknownparameters and apply tests of hypothesis. SBS301MT.3. Apply continuous probability distributions like normal to solve the practical problems. SBS301MT.4. Perform a regression analysis and to compute and interpret the coefficient of correlation. SBS301MT.5. Apply Chi-square test for goodness of fit and independent attributes.
DISCRETE MATHEMATI CS	SES301AD	SES301AD.1. Understand sets, functions, groups and relations. SES301AD.2. Apply permutation and combination to handle different types of problems. SES301AD.3. Apply propositional logic and predicate logic to solve logical statements. SES301AD.4. Evaluate Boolean functions and simplify expressions using the properties of Boolean Algebra. SES301AD.5. Develop the given problem as graph networks and solve with techniques of graph theory.

NAME OF COURS	E COURSE CODE	COURSE OUTCOMES
Software Engineering	PCS01AD	PCS01AD.1. Define different software development processes and their usability in different problem domains. PCS01AD.2. Explain the process of requirements collection, analyzing, and modeling requirements for effective understanding and communication with stakeholders. PCS01AD.3. Building the analysis models and design engineering concepts. PCS01AD.4. Develop the architecture of real world problems towards developing a blueprint for implementation. PCS01AD.5. Understand the concepts of testing, debugging and quality assurance.
Database Management	PCS02AD	PCS02AD.1. Understand the basics of database management system PCS02AD.2. Define queries for preserving the integrity of the database PCS02AD.3. Build ER models for database PCS02AD.4. Organize the data to prevent redundancy PCS02AD.5. Pose queries to retrieve the information from the database
Artificial Intelligence	PCS03AD	PCS03AD.1. Formalize a problem in the language/framework of different AI methods. PCS03AD.2. Illustrate basic principles of AI in solutions that require problem solving, search, Inference. PCS03AD.3. Represent natural language/English using Predicate Logic to build knowledge through various representation mechanisms. PCS03AD.4. Demonstrate understanding of steps involved in building of intelligent agents, expert systems, Bayesian networks. Differentiate between learning paradigms to be applied for an application.
Automata Language and Computation	PC504AD	PC504AD.1.Write a formal notation for strings, languages, and machines. PC504AD.2.Design finite automata to accept a set of strings of a language. PC504AD.3.Design context free grammars to generate strings of context free languages. PC504AD.4.Understand the turing machine computation. PC504AD.5.Distinguish between computability and non-computability and pocifications and pocifications.
Forecasting Techniques	PC50SAD	PCS0SAD.1.Knowledge of basic concepts in time series analysis and forecasting Understanding the use of time series models for forecasting and the limitations of the methods. PCS0SAD.2.Ability to criticize and judge time series regression models. PCS0SAD.3.Distinguish the ARIMA modelling of stationary and non-stationary time series Compare with multivariate times series and other methods of applications
Veb Technologies	PE514AD	PE514AD.1. Construct a basic website using HTML and Cascading Style Sheets. PE514AD.2. Build dynamic web page with validation using Java

		Script objects and by applying different eve handling mechanisms. PES14AD.3. Develop server side programs using Serviets and JSP. PES14AD.4. Construct simple web pages in PHP and represent data in XML format. PES14AD.5. Utilize AJAX and web services to develop interactive web applications.
Artificial Intelligence Lab	PCSS1AD	PCSSIAD.1. Explain artificial intelligence, its characteristics and its application areas. PCSSIAD.2. Formulate real-world problems as state space problems, optimization problems or constraint satisfaction problems. PCSSIAD.3. Select and apply appropriate algorithms and AI techniques to solve complex problems. PCSSIAD.4. Design and develop an expert system by using appropriate tools and techniques.
DBMS Lab	PC5S2AD	PCSS2AD.1. Design database for any real world problem PCSS2AD.2. Implement PL/SQL programs PCSS2AD.3. Define SQL queries PCSS2AD.4. Decide the constraints

Incharge.

HOD

List of POs, PSOs PEOs

Program Outcomes as defined by NBA (PO)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

STANLEY STA

Stanley College of Engineering and Technology for Women

(Approved by AICTE, Accredited by NBA, NAAC 'A', UGC Autonomous)
Abids, Hyderabad, Telangana – 500001

Department of Computer Engineering Department PSO's and PEO's

Program educational objectives: (PEOs)

PEO1: Our graduates shall have enhanced skills and comprehensive knowledge in software and hardware, networking technologies for professional excellence, towards successful self-employment, advanced learning, entrepreneurship and research.

PEO2: Our graduates shall have life-long learning attitude, innovation and creativity to master the state of the art technologies with inclination towards research, devising pragmatic solutions for realistic and social issues in the society.

PEO3: Our graduates shall have optimistic attitude and vibrant personality skills, high ethical values, individuality, excellent teamwork, leadership and entrepreneurial skills towards computer professionalism and ethical practices within the organization and the society.

Program specific outcomes: (PSOs)

PSO1: Problem-Solving Skills: The ability to apply industry standard practices and pragmatic strategies in software and hardware and network project development using open-ended programming environments to deliver a quality product within time and budget for the benefit of students.

PSO2: Design, Implement, Test and Evaluate a computer system, software, hardware, networks, component or innovative algorithm to meet desired needs and to solve a computational problem within time and space.

N					Depai Progr	rtment am Qu	t of Con	ERIN mpute Attain	G &1 r Engir	ECH	NOLC	GYF	OR W	OMEN	
Dea	ne of Far	culty: R	Sirish	3						Acad	emic Ye	ar:202;	2-23		
	nch&Sec										III Sem				
Cou	rse Nam	e: Desi	gn and	Analy	rsis of /	Mgorit	hms								
co	Ist	IInd Mid			7										
CO1	3	IVIId	Int 3	Univ	4										
CO2	1	3	2	3	1										
CO3	3		3	3	1										
CO4		3	3	3											
CO-Pr	MAPPI	3	3	3]										
	-	NG													
	1	2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	1 PC)1 P(50
CO1	2	3	3	1					1	10	1.4	14	1 1	3	3
CO2	2	3	2	1					-1				1	3	3.
CO3	2		3	1					1				1	3	3
CO4	2	3	3	1					1				1	3	3
CO5			2	1					1				1	3	3
PO ATT	AINMEN	T:													
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO	PO1	PO1	PO1	PSO	PSO
	CO1	3	9	9	3		-	100	0	9	0	1	2	1	2
	CO2	4	6	4	2					2			3	9	6
	CO3	6	9	9	3					3			3	9	9
INTERNA	CO4	6	9	9	3					3			3	9	9
L	COS	6	6	6	3					3			3	9	9
	CO1	3	9	9	3					3			3	9	9
	CO2	6	9	6	3					3			3	9	9
	CO3	6	9	9	3					3			3	9	9
	CO4	6	9	9	3				100	3	-		3	9	9
UNIVERSI		6	6	6	3					3			3	9	9
UNIVERSI TY	CO5			and the last of th	III POSTORIO III					3			3	3	3
	CO1	3	3	3	3					-	_	_			-
	CO1	3	3	3	3					3			3	3	3
	CO1	3		3	ALC: NAME OF TAXABLE PARTY.					3			3	3	3
	CO1	3	3	3	3					100000			-	_	3
TY	CO1 CO2 CO3	3 3 3	3	3 3	3					3			3	3	3
TY DVERALL	CO1 CO2 CO3 CO4 CO5	3 3 3 3	3 3 3	3 3 3	3 3					3			3	3 3	3 3
TY	CO1 CO2 CO3 CO4 CO5	3 3 3 3 3	3 3 3 3	3 3 3 3	3 3 3 3					3 3			3 3	3 3	3 3

B.E (CME, AI&DS) IV Sem Internal Examination- II, A.Y- 2022-23

Operating System (SPC402CM) Time: 10:00-11:30 Date:28.06.23 Max Marks: 25 Part - A (Answer all Questions) (5*2= 10 Marks) 1. Define deadlock, starvation and Aging? (2 M)2. What is Belady's anomaly? Which page replacement algorithm suffers from Belady's anomaly? 3. What is Thrashing? Give the reasons of thrashing? (2 M)4. What is File? What are the attributes of a file? (2 M)5. Define Seek time and Rotational latency? (2 M)Part - B (Answer any three out of four Questions) (3*5= 15 Marks) 6. Write the banker's algorithm for deadlock avoidance? (5M) 7.Consider the following page-reference string 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. Calculate the number of page faults that would occur for the following algorithms assuming 1.FIFO 2. Optimal 3. LRU frame size as 4. 8. Explain advantages and disadvantages of following file access methods: -(i) Sequential Access (ii) Direct Access (iii) Indexed Access? (5M) Consider disk queue with I/O requests for the blocks on cylinders: 95, 181, 39,123,12,124,65,68 and the disk head is initially at 57. Compute the total number of head movement according to SSTF, SCAN, LOOK

By Swapna. C

disk scheduling algorithm.

Q	Q1	Q2	Q3	Q4	Q5	Q6	Q7	QS	Q9
o	C03	CO4	CO4	COS	COS	CO3	CO4	CO5	CO5
O	PO1,2,3,5, 8,11,12,PS O1	PO1,2,3,4,6,8 ,9,10,12,PSO 1,2	PO1,2,3,4,6,8 ,9,10,12,PSO 1,2	PO1,2,3,5 ,7,12PSO 1,2	PO1,2,3,5 ,7,12PSO 1,2	PO1,2,3,5, 8,11,12,PS O1	PO1,2,3,4,6,8 ,9,10,12,PSO 1,2	PO1,2,3,5 ,7,12PSO 1,2	PO1,2,3,5 ,7,12PSO 1,2
B T L	1	1	1	1	2	2	5	2	5

(5M)

Sample copy of a course showing all Course Objectives and Course Outcomes

ausbighen ou Menzi	te and communi	omes for all Programmes offered by the Institution are stated and cated to teachers and students.
NAME OF COURSE	COURSE	COURSE OUTCOMES
Mathematics -III (Probability and Statistics)	SBS301MT	SBS301MT.1. Apply probability theory to solve practical problems. SBS301MT.2. Apply various probability distributions to solve practical problems, to estimate unknownparameters and apply tests of hypothesis. SBS301MT.3. Apply continuous probability distributions like normal to solve the practical problems. SBS301MT.4. Perform a regression analysis and to compute and interpret the coefficient of correlation. SBS301MT.5. Apply Chi-square test for goodness of fit and independent attributes.
DISCRETE MATHEMA TICS	SES301AD	SES301AD.1. Understand sets, functions, groups and relations. SES301AD.2. Apply permutation and combination to handle different types of problems. SES301AD.3. Apply propositional logic and predicate logic to solve logical statements. SES301AD.4. Evaluate Boolean functions and simplify expressions using the properties of Boolean Algebra. SES301AD.5. Develop the given problem as graph networks and solve with techniques of graph theory.
OOPS USING JAVA	SPC301AD	SPC301AD.1. Identify classes, objects, members of a class and the relationships needed to solve aproblem. SPC301AD.2. Use interfaces and creating user-defined packages. SPC301AD.3. Utilize exception handling and Multithreading concepts to develop Java programs. SPC301AD.4. Compose programs using the Java Collection API. SPC301AD.5. Design a GUI using GUI components with the integration of event handling. SES302EC.1. Understand the deign process of digital
Digital Electronics	SES302EC	hardware, use Boolean algebra to minimize thelogical expressions and optimize the implementation of logical functions. SES302EC.2 Understand the number representation and design combinational circuits like adders, MUX etc. SES302EC.3 Design Combinational circuits using PLDS and write Verilog HDL code for basic gatesand combinational circuits. SES302EC.4. Analyze sequential circuits using flip-flog and design registers, counters. SES302EC.5. Represent a sequential circuit using Finite State machine and apply state minimization techniques to design a FSM.

Python Programming Lab OOPS USING JAVA LAB	Python. SES311CM.2. Use conditional control structures for problem solving SES311CM.3. Decompose a problem using functions. SES311CM.4. Represent compound data using lists, tuples, dictionaries using Python SES311CM.5. Solve the complex problems using advanced Python concepts and design GUI. SPC311AD.1. Understand object-oriented programming fundamental and java programming fundamentals such as classes, inheritance, abstract classes, interfaces, packages.
Programming Lab OOPS USING SPC311A	Python. SES311CM.2. Use conditional control structures for problem solving SES311CM.3. Decompose a problem using functions. SES311CM.4. Represent compound data using lists, tuples, dictionaries using Python SES311CM.5. Solve the complex problems using advanced Python concepts and design GUI. SPC311AD.1. Understand object-oriented programming fundamental and java programming fundamentals such as classes, inheritance, abstract classes, interfaces, packages.
USING	fundamental and java programming time classes, inheritance, abstract classes, interfaces, packages, classes, inheritance, asymptotic panding, multithreading,
	input output basics and string hatterns SPC311AD.3. Design and apply collection framework. SPC311AD.4. Design AWT and Swings concept. SPC311AD.5. Apply input-output operations through IO package.
CONCEPTS IN COMPUTER ORGANIZA TION AND MICROPRO CESSOR LAB	Programming, instruction set indeveloping microproces based applications. SPC313ADDevelop Applications such as: 8-bit Addition, Multiplication, Division, array operations, swapping, negative and positive numbers. SPC313ADAnalyse the interfaces like serial ports, disto-analog Converters and analog-to-digital converters est SPC313ADBuild interfaces of Input-output and other like stepper motor. SPC313ADAnalyse the function of traffic light control of traffic light co

Department of Electronics and Communication Engineering

STANLEY COLLEGE OF ENGINEERING ANDTECHNOLOGY FOR WOMEN (AUTONOMOUS)

Hyderabad – 500 001
(Affiliated to Osmania University & Approved by AICTE)

(All eligible UG Courses are accredited by NBA & Accredited by NAAC with 'A' Grade)

Department of Electronics and Communication Engineering

Vision of the Institute

Empowering girl students through professional education integrated with values and character to make an impact in the World.

Mission of the Institute

- M1: Providing quality engineering education for girl students to make them competent and confident to succeed in professional practice and advanced learning.

 M2: Establish state-of-art-facilities and resources to facilitate world class education.
- M3: Integrating qualities like humanity, social values, ethics, leadership in order to encourage

Vision of the Department

Empowering girl students with the contemporary knowledge in Electronics and Communication Engineering for their success in life.

Mission of the Department

- M1: To impart rationalized and high quality technical education and knowledge.

 M2: To achieve self-sustainability and overall development through Research and Cons
- activities.

 M3: To provide education for life by focusing on the inculcation of human and moral values through
- an honest and scientific approach M4: To groom students with good attitude and personality skills.

Program Educational Objectives:

PEO-1: Graduate shall have skills to excel in professional career and in applied research through innovative design by acquiring the knowledge in Electronics and Communication Engineering principles

PEO-2: Graduate shall pursue higher education and participate in research and development activities or entrepreneurship to integrate engineering work in the environmental, ethical and broader societal

PEO-3: Graduate shall exhibit effective communication, good team building and leadership qualities to design socially accepted and economically feasible solutions through multidisciplinary and interdisciplinary approaches for analysis of real-life problems.

STANLEY COLLEGE OF ENGINEERING ANDTECHNOLOGY FOR WOMEN (AUTONOMOUS)

Hyderabad – 500 001

(Affiliated to Osmania University & Approved by AICTE)

(All eligible UG Courses are accredited by NBA & Accredited by NBAC with 'A' Grade)

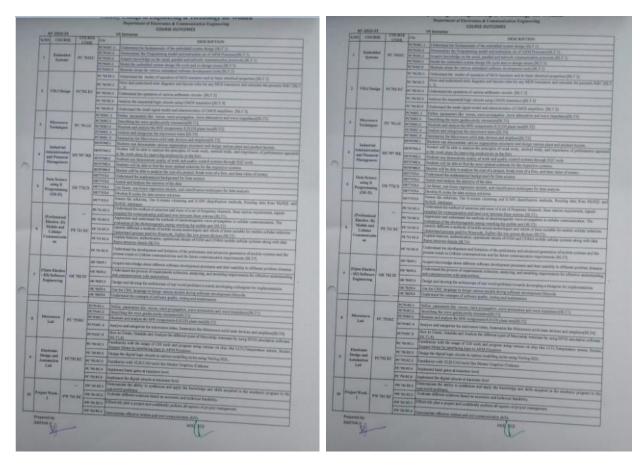
Department of Electronics and Communication Engineering

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
- 2. Problem Analysis: Identify, formulate, review research literature, and analyze complex
- Fromcom Amaryso: identity, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Considerations.

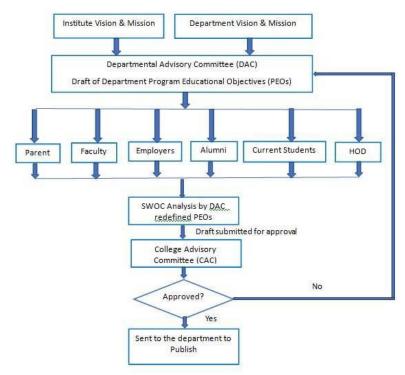
 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- methods including design or experiments, information to provide valid conclusions.

 5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
- Environment & sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
- Emiss: Apply etincal principles and commit to professional ethics and responsibilities and norms
 of the engineering practice.
 Individual and Team work: Function effectively as an individual, and as a member or leader in
 diverse teams, and in multidisciplinary settings.
 Communication: Communicate effectively on complex engineering activities with the
 engineering community and with society at large, such as, being able to comprehend and write
 effective reports and design documentation, make effective presentations, and give and receive
 clear instructions.
- 11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.


 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes:


PSO1: Appertain to Communication and Automation Principles: To apply principles of Communication Engineering and Signal Processing both in private and public organizations.

PSO2: Adaptability to Productive Environment: To be well equipped with Management

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering

Process for Program Educational Objectives (PEOs)

As a result of this feedback, two major changes have been made: Approval of CAC is required for Department Vision and Mission and Program Educational Objectives (PEOs). If not approved, the Vision-Mission restructuring is done through the DAC. In the case of PEOs, a revised draft based on the CAC feedback is framed by the DAC and then the stakeholders are involved in redefining them. This process is followed by SWOC analysis and finally, submission to the CAC for approval.

Drafting, Validation, Approval and Decimation of Vision, Mission and PEOs: The department established the draft Vision and Mission through a consultative process involving the stakeholders, faculty of the department and the Department Advisory Committee through Multi-level meetings. The stakeholders include parents, faculty, employers, alumni, current students, Head of the department.

The process flow was initiated through a Department Advisory Committee (DAC) meeting for establishing the first draft of the Vision and Mission statements, with an Industry Expert, a University Expert, HOD (ECE) and senior faculty, in alignment to the Institute Vision-Mission. The statements were refined by DAC after a through brainstorming session by the stakeholders. The draft is then submitted to the College Advisory Committee (CAC) consisting of the experts from academia and industry. The document (on Department Vision-Mission) is submitted to the department for publishing upon approval. If not approved, the DAC reiterates the exercise based on the stakeholders' input in the initial stages.

The Department Vision-Mission was dessimated at various locations, during various meets like

Department of Electronics and Communication Engineering

Orientation Day, Parents' Meet, etc. and to all the stakeholders through post/e-mail.

The principles to establish a common foundation for developing practices that carry out the mission and vision of the department were benchmarked and validated in global context. These would govern the Program Educational Objectives (PEOs) that the graduate would achieve within 3 to 5 years after graduation. The final draft was approved and finalized by the CAC and sent to the department for publishing. The approved PEOs were dessimated to the stakeholders. In the process, if these PEOs were not approved, the exercise would be repeated after another draft based on the feedback from the CAC is prepared by the DAC. The draft is revisited in meetings including the interactions with the stakeholders before the final submission for approval to the CAC.

The consistency of the Department Mission with the Institute Mission, PEOs with Institute Mission, PEOs with Department Mission, PEOs with Program Outcomes (POs) and Program Specific Outcomes (PSOs) is identified.

The Assessment of the achievement of the PEOs through various forms of data collection and academic components is defined.

The meetings conducted at every stage are documented through the dispatch of invitation letters to the stakeholders, their approval to attend the meetings, the meeting minutes and the attendance.

PSOs:

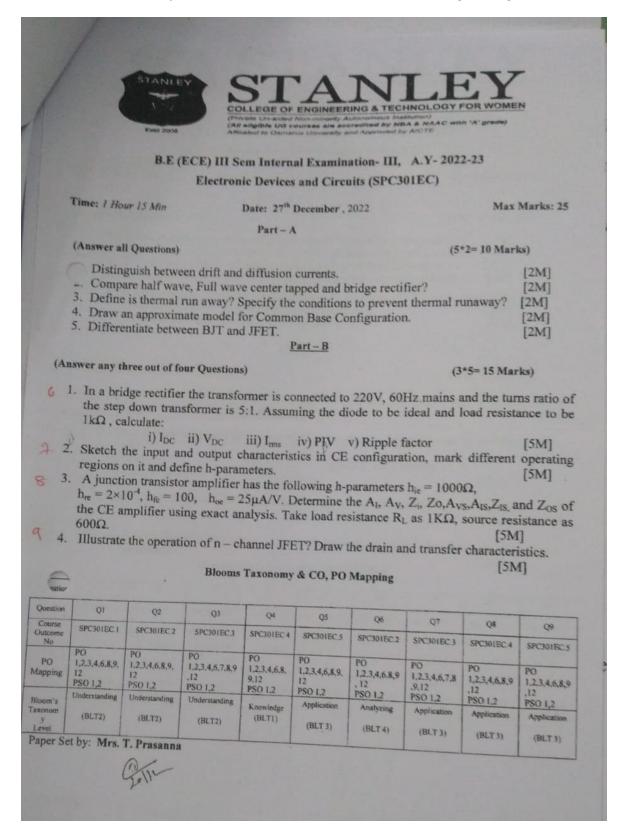
- o To apply principles of Communication engineering and Signal processing both in private and public organizations.
- o To be well equipped with Management skills, interdisciplinary and modern technologies.

Department of Electronics and Communication Engineering

CO-PO MAPPING:

Stanley College of Engineering & Technology for Women(Autonomous)

Department of Electronics & Communication Engineering


COURSE OUTCOMES

2022-23		IV Sem	mester					
COURSE	COURSE CODE	COs	DESCRIPTION					
		SPC401EC.1	Analyze frequency response of Amplifiers.(BLT 4)					
ANALOG		SPC401EC.2	Compare and analyse the types of feedback amplifiers.((BLT 4)					
ELECTRONIC	SPC 401 EC	SPC401EC.3	Design and analyze oscillators at audio and radio frequencies. (BLT 5)					
CIRCUITS		SPC401EC.4	Distinguish and design various classes of power amplifiers (BLT 4)					
		SPC401EC.5	Compare the performance of single, double and stagger tuned amplifiers. (BLT 4)					
		SPC402EC.1	Define and differentiate types of signals and systems in continuous and discrete time domains (BLT- 1Remember)					
SIGNALS AND		SPC402EC.2	Explain the properties of Fourier transform for continuous time signals (BLT-2 Understand)					
SYSTEMS	SPC 402 EC	SPC402EC.3	Apply continuous time Fourier Transform and Laplace Transform for analysis of system behavior. (BLT-3 Apply)					
		SPC402EC.4	Perform Fourier analysis of discrete time signals (BLT-4 Analyze)					
		SPC402EC.5	Construct Z-transforms for discrete time signals to solve difference equations (BLT-6 Create)					
INTEGRATED		SPC403EC.1	Construct different linear and non linear networks and analyse their response to different input signals					
CIRCUITS		SPC403EC.2	Design and analyze multi vibrators and sweep circuits using transistors					
AND APPLICATION	SPC 403 EC	SPC403EC.3	Analyze DC and AC characteristics for Single/Dual input Balanced/Unbalanced output configurations using BJTs					
S		SPC403EC.4	Understand the applications of OPAMP					
		SPC403EC.5	Experiment with the applications of SSS timer, D/A and A/D converter types					
COMPUTER		SPC404EC.1	Perform mathematical operations on fixed and floating point digital data(BLT 4)					
ORGANIZATIO		SPC404EC.2	Illustrate the operation of a digital computer. (BLT 2)					
N AND	SPC 404 EC	SPC404EC.3	Understand I/O interfacing of a computer. (BLT 1)					
ARCHITECTU		SPC404EC.4	Interface microprocessor with memory devices. (BLT 4)					
RE		SPC404EC.5	Understand latest trends in microprocessors. (BLT 4)					
		SPC405EC.1	Understand the basic principles of antennas and learn the antenna terminology. (BLT 2)					
	COURSE ANALOG ELECTRONIC CIRCUITS SIGNALS AND SYSTEMS INTEGRATED CIRCUITS AND APPLICATION S COMPUTER ORGANIZATIO N AND	COURSE CODE ANALOG ELECTRONIC CIRCUITS SIGNALS AND SYSTEMS INTEGRATED CIRCUITS AND APPLICATION S COMPUTER ORGANIZATIO N AND ARCHITECTU	COURSE CODE COs ANALOG ELECTRONIC CIRCUITS SPC 401 EC SPC401EC.2 SPC401EC.2 SPC401EC.3 SPC401EC.5 SPC401EC.5 SPC401EC.5 SPC401EC.5 SPC402EC.1 SPC402EC.1 SPC402EC.2 SPC402EC.3 SPC402EC.3 SPC402EC.5 SPC402EC.3 SPC402EC.4 SPC402EC.5 SPC403EC.1 SPC403EC.2 SPC403EC.3 SPC403EC.2 SPC403EC.3 SPC403EC.3 SPC403EC.3 SPC403EC.3 SPC403EC.3 SPC403EC.3 SPC403EC.3 SPC404EC.3 SPC404EC.1 SPC404EC.1 SPC404EC.3 SPC404EC.3 SPC404EC.3 SPC404EC.3 SPC404EC.4 SPC404EC.5					

Department of Electronics and Communication Engineering

	Star	nley Colleg	ge of Engir	neeri	ng &	z Te	chno	olog	y fo	r W	ome	n(A	utono	moı	1s)		
			Department o	of Elec	tronic	s & C	omm	unica	tion l	Engin	eerin	g					
				PR	OGR/	O MA	UTC	OME:	S								
AY	:2022-23	IV Ser	mester														
s.N	COURSE	COURSE	SNO	PO1	PO2	PO3	РО	РО	РО	РО	PO8	PO9	PO10	PO1	PO12	PSO1	PSO
			PC401EC.1	3	3	3		3								2	3
		.a	PC401EC.2	3	3	3		3								2	3
	1 ELECTRONIC SPC 401 EC CIRCUITS	PC401EC.3	3	3	3		3								3	3	
1		SPC 401 EC	PC401EC.4	3	3	3	2	3								2	3
		PC401EC.5	3	3	3	2	3								2	3	
			AVG	3.00	3.00	3.00	2.00	3.00								2.20	3.00
			SPC402EC.1	3	3			1							2	2	3
	SIGNALS		SPC402EC.2	3	3	3	3	1							2	2	3
2	AND	SPC 402 EC	SPC402EC.3	3	3	3	3	3				1			1	2	3
	SYSTEMS		SPC402EC.4	3	3	3	3	3				1			1	2	3
			SPC402EC.5	3	3	3	3	3				1			2	2	3
			AVG	3.00	3.00	3.00	3.00	2.20				1.00			1.60	2.00	3.00
			SPC403EC.1	3	3		2									3	
	INTEGRATED CIRCUITS		SPC403EC.2	3	3	3	2									3	
3	AND	SPC 403 EC	SPC403EC.3	3	3	3	3									3	
•	APPLICATION	<i>2</i> 0 100 20	SPC403EC.4	3	1	3									2	3	
	s		SPC403EC.5	3		2	2								3	3	<u> </u>
			AVG	3.00	2.00	2.20	1.80								1.00	3.00	<u> </u>
	COMMITTEE		SPC404EC.1	3	3	3	3		3	3					3	3	3
	COMPUTER ORGANIZATI		SPC404EC.2	3	3	3	3		3	3					3	3	3
4	ON AND	SPC 404 EC	SPC404EC.3	3	3	3	3		3	3					3	3	3
-	ARCHITECTU		SPC404EC.4	3	3	3	3		3	3					3	3	3
	RE		SPC404EC.5	3	3	3	3		3	3					3	3	3
			AVG	3.00	3.00	3.00	3.00		3.00	3.00					3.00	3.00	3.00

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering

Scheme of Instruction & Detailed Syllabus

Course Code			Cour	se Title			Core / Elective
SPC301EC	The state of the s						
Prerequisite -	Co	ntact hou	ırs per w	eek	CIE	SEE	Credits
	L	Т	D	P	CIE	SEE	Credits
-	3	_	-	-	40	60	3

Course Objectives:

- To familiarize basic concepts of semiconductor devices.
- To comprehend the applications of diodes as rectifiers and filters.
- 3. To give insights of V-I characteristics of BJT configurations.
- 4. To comprehend amplifier configurations using h-parameter model.
- 5. To illustrate V-I characteristics of FETs and MOSFETs and their applications.

Course Outcomes: On successful completion of the course, the students will be able to

- Interpret the characteristics of diodes using models for analysis of various applications.
- 2. Compare performance characteristics of various filters.
- 3. Discriminate the BJT configurations and design a stable biasing circuit.
- 4. Analyse and design BJT amplifiers.
- 5. Distinguish the operations of FETs & MOSFETs.

UNIT-I:

Basics of Semiconductors: Review of semiconductors and their properties, Poisson and continuity equations, Hall Effect, Fermi level in P- and N-type semiconductors.

Junction Diode: PN Junction formation, Characteristics, biasing- band diagrams and current flow, Diode current equation, Diode as a circuit element, small signal diode models, Diode switching characteristics, effect of temperature on diode characteristics, Breakdown mechanisms in diodes, Zener Diodes and Zener voltage regulator.

UNIT-II

PN Diode Applications: Half wave, Full wave and Bridge rectifiers - their operation, performance characteristics, and analysis; Filters-L, C, LC and CLC filters, used in power supplies with FWR and their ripple factor calculations, design of Rectifiers with and without Filters.

COURSE OUTCOMES:

SNO	DESCRIPTION	PO(112) MAPPING	PSO(13) MAPPING
SBS101MT.1	Find the nature of series and sequences (Evaluate).	PO1,PO2,PO3,PO4,P	012PSO1,PSO2
	Analyze the consequences of the mean value Theorems for differentiable functions and Evaluate the Curvature (Anlayze).	PO1,PO2,PO3,PO4,,P	O12PSO1,PSO2
action of two forty black both article Social	To explore the idea for finding the extreme values of Multi variable functions (Knowledge).	PO1,PO2,PO3,PO4,P	012PSO1,PSO2
	Understanding the concepts of vector and scalar fields and applying the concepts to solve the problems on Green's, Gauss and Stroke's (Understand).	PO1,PO2,PO3,PO4,P	012PSO1,PSO2
SBS101MT.5	Solve the engineering problems using Numerical methods (Application.)	PO1,PO2,PO3,PO4,PO	012PSO1,PSO2

COURSE OUTCOMES VS POS MAPPING (DETAILED; HIGH:3;

MEDIUM:2; LOW:1):

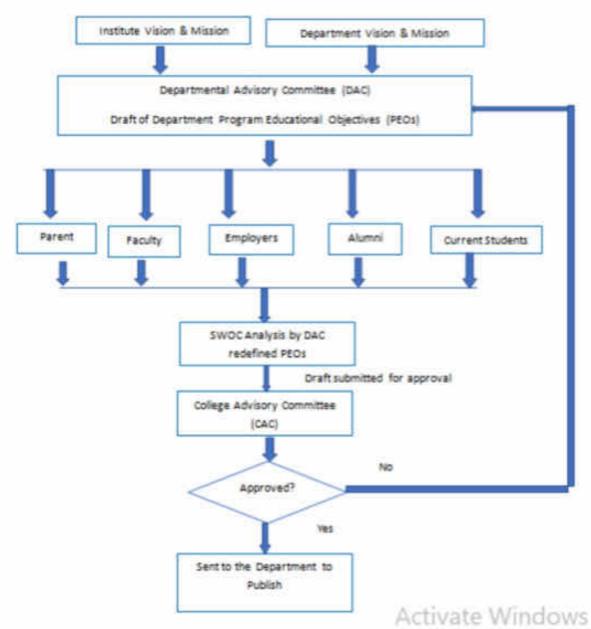
SNO	POI	PO2	PO3	PO4 PO5 PO6 PO	07 PO8 PO9	PO10 PO11	PO12	PSO1	PSO2
SBS101MT.1	3	3	2	2			2	3	1
SBS101MT.2	3	3	2	2			2	3	1
SBS101MT.3	3	3	2	2			2	3	1
SBS101MT.4	3	3	2	2			2	3	1
SBS101MT.5	3	3	2	2			2	3	1

^{*} For Entire Course, PO & PSO Mapping

Note: Enter correlationlevels1,2 or 3 as defined below:

1:Slight(Low)

2:Moderate(Medium)


3:

Substantial(High)

POs and PSOs of IT Dept

Programme Outcomes:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics and natural sciences and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment & sustainability: Understand the impact of professional engineering solutions in societal and environmental context, and demonstrate knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and Team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Flow Chart of process for defining PEO's of the IT - department

- PSO1: Acquire skills to design, analyze and implement algorithms using high-level programming languages.
- PSO2: Contribute their engineering skills in information technology domains like operating systems, network design and web designing, database design, information security and cloud computing.
- 3. PSO3: An ability to design and implement knowledge-based discovery and machine learning by oncepts of mathematical models, digital system design, neural networks, internet of things

- Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinarysettings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clearinstructions.
- II. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinaryenvironments.
- 12. Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technologicalchange.

Program Specific Outcomes:

PSO1: To instill interest and curiosity in students in the field of AI and Data Science through project based learning.

PSO2: To provide a concrete foundation and enrich their abilities to qualify for Employment, Higher studies and pursue Research in Artificial Intelligence and Data science with ethical values.

PSO3: To promote ethical and responsible AI practices for the benefit of humanity; and to harness AI for a positive societal impact & meet global standards.

Program Educational Objectives:

- **PEO1:** To provide graduates with the proficiency to utilize the fundamental knowledge of basic sciences, mathematics, artificial intelligence, data science and statistics to build systems that require management and analysis of large volume of data.
- **PEO2:** To enrich graduates with necessary technical skills to pursue pioneering research in the field of AI
- **PEO3:** To encourage students to think critically, develop innovative skills, expose them to an array of ideas and information through numerous technical events, hackathons and quality internships.

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

Chapel Road, Abids, HYDERABAD – 500 001 Department of Computer Science and Engineering

Program Outcomes:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineeringsciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide validconclusions.
- 5. Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment & sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- 11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes:

- PSO1: Acquire skills to design, analyze and implement algorithms using high-level programming languages.
- PSO2: Contribute their engineering skills in information technology domains like operating systems, network design and web designing, database design, information security and cloud computing.
- 3. PSO3: An ability to design and implement knowledgebased discovery and machine learning by using the various concepts of mathematical models, digital system design, neural networks, internet of things.

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

(Private Un-aided Non-minority Autonomous Institution)
(All eligible UG courses are accredited by NBA & NAAC with 'A' grade)
Affiliated to Osmania University and Approved by AICTE

B.E (IT-A,B) I Sem Internal Examination- I,

January 2022

SET-1

Chemistry (SBS904CH)

[1.15 Hour] [Max Marks: 25]

Part - A (5*2= 10 Marks)

(All Questions are compulsory)

- 1.Define Reverse osmosis and mention any one example? (2 M)
- 2. What is Pilling Bedworth rule and write its importance? (2 M)
- 3. Write any Five specifications of Potable water? (2 M)
- 4. Write the chemical reactions and Applications of Li ion Batteries? (2 M)
- 5.Define Fuel Cell?Give any two Examples? (2 M)

Part - B (3*5= 15 Marks)

(Three out of four have to be Answered)

- 6.Explain the Process of Determination of Temporary, Permanent and Total Hardness of water by Using EDTA method? (5M)
- 7.Define Hot dipping? Explain the method of Galvanisation with relevant diagram?

(5M)

- 8. a)Calculate the permanent hardness of a given sample of water from the following data. A 250 ml of water sample is boiled and filtered. The filtrate is made upto 250 ml with distilled water. 50 ml of this water requires 3 ml of EDTA solution of N/50 Normality with Basic buffer and EBT indicator.
- b)Calculate single electrode potential for copper metal in contact with 0.15M CU⁺² solution. E⁰ for copper is 0.34V.(R=8.314JK-1mol-1,T=298K). (5M)
- 9.Derive the Nernst Equation and write its Applications? (5M)

Q. No.	1	2	3	4	5	6	7	8	9
COs	COI	CO2	CO2	COI	CO1,2	CO2	CO2	CO1,CO2	COI
POs	PO1	PO1,2	PO1,2,4	PO1,3,5	PO1,2,5	PO1,5,6	PO1,2	PO1,2,3	PO1,2,6,
BT									

Paper set by: R.Gangadhara, Asst. Professor of Chemistry

STANLEY COLLEGE OF ENGINEERING & TECHNOLOGY FOR WOMEN

(Private Un-aided Non-minority Autonomous Institution)
(All eligible UG courses are accredited by NBA & NAAC with 'A' grade)
Affiliated to Osmania University and Approved by AICTE

B.E (IT) I Sem Internal Examination- II,(02-03-2023)

SET-1

Chemistry

(SBS903CH)

[1.15 Hour] [Max Marks: 25]

Part - A (5*2= 10 Marks)

(All Question are compulsory)

- 1. Write any four Applications of Conducting polymers? (2M)
- Discuss the preparation and properties of PET(Poly Ethylene Terepthalate)? (2M)
- 3. Define Octane and Cetane Number ? (2M)
- 4. Define quantum dots and write any four Applications? (2M)
- Calculate Gross and Net Calorific values of Coal having compositions C =80%,H
 -7%,O =3%,S=3.5%,N=2.1% and Ash=4%. (2M)

Part - B (3*5= 15 Marks)

(Three out of four have to be Answered)

- 6.Explain the Energy Level Diagram of Oxygen Molecule? (5M)
- 7. Write Preparation, Properties and Uses of Bakelite? (5M)
- 8.Explain Proximate analysis of Coal and write its Significance? (5M)
- 9.Explain Briefly about twelve Principles of Green Chemistry? (5M)

Q. No.	1	2	3	4	5	6	7	8	9
Cos	CO3	CO3	CO4	CO5	CO4	CO3	CO3	CO4	CO5
Pos	PO1	PO1,2	PO1,2,4	PO1,3,5	PO1,2,5	PO1,5,6	PO1,2	PO1,2,3	PO1,2,6,
BT	Application	knowledge	knowledge	Application	Analysis	knowledge	knowledge	Analysis	Knowledge

Prepared by

Md.Sajeeda

MATHEMATCS-I

COURSE HANDOUT

SUBJECT CODE: SBS101 MT Year:2021-2022

Duration of University Examination:

University Examination:

Sessionals: Instruction

period:

3 Hours 60 Marks

40 Marks

3+1 (Tutorial) hours/Week

Course Objective:

- To introduce the concepts of sequences, series and their properties
- To provide the knowledge of curve sketching
- To introduce the concepts of functions of several variables
- To study vector differential and integral calculus
- To provide the overview of engineering problems using Numerical methods

Course Outcomes:

SBS101 MT .1 To examine the convergence or divergence of a given infinite series

SBS101 MT .2 To Evaluate the Radius of curvature, center , evalute and envelope.

SBS101 MT.3 To explore the idea for finding the extreme values of functions

SBS101 MT .4 Apply fundamental theorems like Green's theorem, Stokes theorem and Gauss

Divergence to evaluate Integrals.

SBS101 MT .5 To provide the overview of engineering problems using Numerical methods